The Grothendieck (semi)ring of algebraically closed fields

Tibor Beke

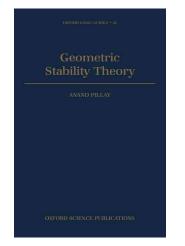
University of Massachusetts tibor_beke@uml.edu

Nov 3, 2015

- ► First order logic: language contains relation, constant and function symbols; only allows ∀ and ∃ quantifiers ranging over the domain of interpretation
- 'Theory' is a set of first order axioms in a given language
- Can axiomatize most algebraic structures (e.g: ring, field, difference field; algebraically closed field, real closed field; category, groupoid; metric space) this way
- No obvious first order axiomatization for: noetherian ring; topological space; manifold; variety; ringed space; scheme; complete metric space

- Strong set-theoretical flavor. Motivating question: given a theory *T* and infinite cardinal κ, what is the cardinality of the set of isomorphism classes of models of *T* of size κ?
- Take T to be the theory of algebraically closed fields of a specific characteristic, κ an uncountable cardinal. Any two models of T of size κ are isomorphic (since they must have the same transcendence degree, namely κ, over the prime field). This is a rare phenomenon!
- Łós's conjecture: Let *T* contain countably many axioms.
 Suppose that for *at least one* uncountable κ, *T* has a unique isomorphism class of models of cardinality κ. Then, for *every* uncountable κ, *T* has a unique isomorphism class of models of cardinality κ.

- Morley (1966) proves Łós's conjecture. Major contribution: identifies a class of theories *T* whose models admit a structure theory of 'transcendence degree' similar to those of algebraically closed fields. (These theories are called ω-stable.)
- Vast technical elaboration of machinery of stability by Shelah, Baldwin, Lachlan, and others. Solution of the 'spectrum problem': how many isomorphisms classes of models can a theory have in uncountable cardinalities.
- Interest shifts to understanding the fine structure of specific models of specific types of theories.



A model-theoretic geometry consists of a set X ("points") and for each $n \in \mathbb{N}$, a set of subsets of X^n , denoted \mathcal{B}_n (" definable subsets of X^n ") such that

• \mathcal{B}_n is closed under boolean operations in X^n

▶ if $U \in \mathcal{B}_n$ and $V \in \mathcal{B}_m$ then $U \times V \in \mathcal{B}_{n+m}$

- if $U \in \mathcal{B}_n$ then $pr(U) \in \mathcal{B}_m$ for any projection $pr: X^n \to X^m$
- diagonals belong to \mathcal{B}_n ; singletons belong to \mathcal{B}_1 .

See van den Dries: *Tame geometry and o-minimal structures* for a minimal set of axioms.

Let X, \mathcal{B}_n , $n \in \mathbb{N}$ be a model-theoretic geometry. Introduce the category

$$\mathsf{Def}(\mathsf{X}) \text{ with } \begin{cases} \mathsf{objects} &= \mathsf{definable sets} \ (i.e. \ \mathsf{elements} \ \mathsf{of} \ \mathcal{B}_n) \\ \mathsf{morphisms} &= \mathsf{definable functions} \end{cases}$$

i.e. a morphism from a definable $U \subseteq X^n$ to a definable $V \subseteq X^m$ is a function $f : U \to V$ whose graph belongs to \mathcal{B}_{n+m} . Let \mathcal{L} be a first-order signature (set of constant, function and relation symbols), and let the set X be equipped with interpretations of these symbols. For $U \subseteq X^n$, let

$$U \in \mathcal{B}_n$$
 iff $U = \{ \mathbf{x} \in X^n \mid X \models \phi(\mathbf{x}) \}$

for some first-order formula ϕ in the signature \mathcal{L} (allowing parameters form X), with free variables from among the $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$.

underlying set: \mathbb{R} ; language: +, scalar multiplication, < =

- ► can define half-spaces {x | ⟨a, x⟩ < b}, affine subspaces and their finite boolean combinations; and via first order formulas, only these
- ▶ objects of SemiLin_ℝ are finite boolean combinations of polytopes (possibly unbounded)
- ▶ morphisms of SemiLin_ℝ are "piecewise linear" functions (i.e. set-functions whose graph belongs to SemiLin_ℝ; need not be continuous!)
- the *n*-simplex Δ_n and $[0,1]^n$ are isomorphic in SemiLin_R (fun!)

Let k be a field and let FO(k) be the geometry of first order definable sets over k, in the language of $+ \cdot =$

Best understood when k is a local field, or an algebraically closed field (or "close" to being algebraically closed: pseudo-finite, pseudo-algebraically closed etc ...)

Consider $FO(\mathbb{R})$. Relation x < y is definable as $x \neq y \land \exists z(x + z^2 = y)$. So $FO(\mathbb{R})$ contains all semi-algebraic sets and in fact, coincides with semi-algebraic sets.

- Subset of ℝⁿ is semi-algebraic if it can be written as a finite boolean combination of sets of the form {x | p(x) > 0}, where p(x) is a polynomial
- ▶ projection of semi-algebraic set is semi-algebraic (Seidenberg), equivalently: the subset of ℝⁿ defined by any first order formula in the above language is semi-algebraic (Tarski)
- ▶ objects of $FO(\mathbb{R}) = SemiAlg_{\mathbb{R}}$ are semi-algebraic subsets of \mathbb{R}^n
- morphisms are set-functions with semi-algebraic graph (need not be continuous!)

Let k be an algebraically closed field. FO(k) will coincide with $Constr_k$, the category whose

- objects are constructible subsets of kⁿ (closed under projection by Chevalley's theorem; Tarski also proves that any subset of kⁿ definable via a first order formula in the above language, is constructible)
- morphisms are set-functions with constructible graph (need not be continuous!)

main problems concerning the category of definable sets

- Does it have quotients of equivalence relations?
- Find a notion of 'dimension' for objects
- Find a notion of 'size' for objects

- How do these invariants vary in families?
- Is there a *field* (perhaps even algebraically closed) among the objects of Def(X)?
- What are (abelian) group objects in Def(X)?

main problems concerning the category of definable sets

- Does it have quotients of equivalence relations?
- Find a notion of 'dimension' for objects dimension will be a homomorphism from the Grothendieck semiring to some semi-lattice
- Find a notion of 'size' for objects

- How do these invariants vary in families?
- Is there a *field* (perhaps even algebraically closed) among the objects of Def(X)?
- What are (abelian) group objects in Def(X)?

main problems concerning the category of definable sets

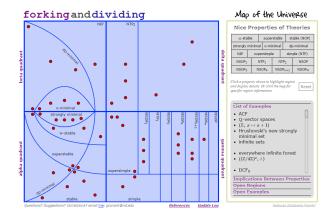
- Does it have quotients of equivalence relations?
- Find a notion of 'dimension' for objects dimension will be a homomorphism from the Grothendieck semiring to some semi-lattice
- Find a notion of 'size' for objects

(finitely additive) measure will be a homomorphism from the Grothendieck group to some abelian group; Euler characteristic will be homomorphism from the Grothendieck ring to some ring

- How do these invariants vary in families?
- Is there a *field* (perhaps even algebraically closed) among the objects of Def(X)?
- What are (abelian) group objects in Def(X)?

model theory, 2000 - present

Identify combinatorial conditions on first-order theories T that ensure 'nice solutions' to the main problems. http://www.forkinganddividing.com



$\label{eq:proposition} \textbf{Proposition} \ Def(X)$

- has terminal object and pullbacks (so finite limits); they are computed as in Set
- has finite coproducts
- ▶ is *distributive*: the canonical maps

$$\varnothing \rightarrow X \times \varnothing$$

$$X \times Y \sqcup X \times Z \rightarrow X \times (Y \sqcup Z)$$

are isomorphisms

 is boolean (subobject posets are boolean algebras; every subobject is a coproduct summand)

Grothendieck (semi)ring of a (small) distributive category ${\cal C}$

SK(C) is the semiring whose elements are isomorphism classes [X] of objects X, with $[X] \cdot [Y] := [X \times Y]$ and $[X] + [Y] := [X \sqcup Y]$.

 $K(\mathcal{C})$ is the abelian group generated by isomorphism classes [X] of objects X, with the relations $[X \sqcup Y] = [X] + [Y]$. Multiplication is induced by $[X] \cdot [Y] = [X \times Y]$.

- Semiring is a 'ring without additive inverses'.
- There are adjoint functors

$$Ring \stackrel{groth}{\underset{inc}{\overset{groth}{\leftarrow}}} SemiRing$$

and $K(\mathcal{C}) = groth(SK(\mathcal{C}))$.

• Schanuel (1990) calls SK(C) the "Burnside rig of C" in his pioneering article Negative sets have Euler characteristic and dimension.

Theorem (Lojasiewicz; Hironaka, ca. 1960) The inclusion of categories $SemiLin_{\mathbb{R}} \hookrightarrow SemiAlg_{\mathbb{R}}$ induces isomorphisms

 $\mathsf{SK}(\mathsf{SemiLin}_{\mathbb{R}}) \stackrel{=}{
ightarrow} \mathsf{SK}(\mathsf{SemiAlg}_{\mathbb{R}})$

Theorem (Schanuel 1990)

SK(SemiLin) is a finitely presentable semiring, isomorphic to

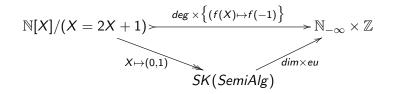
 $\mathbb{N}[X]/(X=2X+1).$

Theorem (Schanuel 1990; o-minimal: van den Dries, 1998) There is a monomorphism

$$SK(SemiAlg) \xrightarrow{\dim \times eu} \{\mathbb{N} \cup -\infty\}_{\langle +, \max \rangle} \times \mathbb{Z}$$

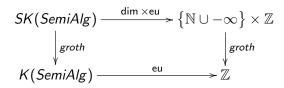
where *dim* is topological dimension and *eu* is the combinatorial Euler characteristic (to be defined momentarily).

Commutative diagram



Degree-wise induction shows top arrow injective; left arrow surjective, hence isomorphism.

Commutative diagram



groth preserves products. It need not preserve monos, but an easy argument shows that in the present case, the bottom arrow is an isomorphism.

Let X be semi-algebraic and (V, S) an open-cell complex such that X is semi-algebraically homeomorphic to |S|.

Definition $eu(X) = \sum_{U \in S} (-1)^{dim(U)}$

Theorem eu(X) is independent of the open-cell decomposition chosen.

The proof needs that any two semi-algebraic open-cell decompositions have a common semi-algebraic refinement.

Let \mathbb{F} be any field. Let $H^*(-; \mathbb{F})$ denote sheaf (or equivalently, singular) cohomology and let $H^*_c(-; \mathbb{F})$ denote cohomology with compact support. Let X be a semi-algebraic set.

If X is locally compact,

$$\operatorname{eu}(X) = \chi_c(X) = \sum_{i=0}^{\dim(X)} (-1)^i \dim_{\mathbb{F}} H_c^i(X; \mathbb{F}).$$

Follows from H_c^* long exact sequence of $U \subset X$ where U is open, X Hausdorff, locally compact; cell decomposition of X and induction.

embarrassing!

- Is eu(X) = χ_c(X) for all semi-algebraic X, not just locally compact ones? Is there a cohomological interpretation of eu(X) valid for all X?
- ► \u03c6 \u03c6 x c is a proper (topological) homotopy invariant. Is that true for eu(X) as well?

Theorem (TB, 2011) If X, Y are semi-algebraic (or more generally, o-minimal, belonging to possibly two distinct o-minimal structures) and topologically homeomorphic then eu(X) = eu(Y).

Proof reduces to locally compact case with the help of an intrinsically defined stratification of o-minimal sets.

Remark Already two polyhedra can be topologically homeomorphic but not semi-algebraically so (Milnor, counterexample to the polyhedral Hauptvermutung, 1961).

non-archimedean example

Recall that $FO(\mathbb{Q}_p)$ is the geometry of subsets of $(\mathbb{Q}_p)^n$ that are first order definable in the language $+ \cdot =$.

Theorem (Clucker–Haskell 2000) The Grothendieck ring of $FO(\mathbb{Q}_p)$ is trivial.

When $p \neq 2$

$$\mathbb{Z}_{p} = \left\{ x \in \mathbb{Q}_{p} \mid \exists y \in \mathbb{Q}_{p}(y^{2} = 1 + px^{2}) \right\}$$

When p = 2

$$\mathbb{Z}_2 = \left\{ x \in \mathbb{Q}_2 \mid \exists y \in \mathbb{Q}_2(y^3 = 1 + 2x^3) \right\}$$

So \mathbb{Z}_p is an object of $FO(\mathbb{Q}_p)$.

 \mathbb{Z}_p is an object of $FO(\mathbb{Q}_p)$. Clucker and Haskell then give an explicit bijection between $\mathbb{Z}_p - \{0\}$ and \mathbb{Z}_p in $FO(\mathbb{Q}_p)$.

In any distributive category C, if for some object Z the objects $Z - \{pt\}$ and Z are isomorphic, then $[pt] = [\varnothing]$ in K(C), so the Grothendieck ring K(C) is trivial.

For any field k, let $SK(Var_k)$ be the semiring with generators the varieties over k and relations

$$[X] = [Y]$$
 if X and Y are isomorphic over k

$$[X] = [X - U] + [U]$$

for every open subvariety U of X with complement X - U.

The product of [X] and [Y] is $[X \otimes_k Y]$.

 $K(Var_k)$ is the ring generated by the same generators and relations.

Let k be algebraically closed. There's a natural homomorphism

$$SK(Var_k) \xrightarrow{\alpha_S} SK(Constr_k)$$

Theorem (TB 2013) α_S is an isomorphism when char(k) = 0. It is surjective but not injective when char(k) > 0.

Corollary (folk; Sebag-Nicaise 2011) The model-theorist's Grothendieck ring of the field k and Grothendieck's Grothendieck ring of varieties over k, are isomorphic for k algebraically closed of characteristic 0.

 $SK(Var_k) \xrightarrow{\alpha_S} SK(Constr_k)$

Given variety X, choose a decomposition (as point set) $X = \bigsqcup_{i=1}^{n} C_i$ into pairwise disjoint affine constructible sets and send [X] to $\sum_{i=1}^{n} [C_i] \in SK(Constr_k)$.

► such decompositions always exist; e.g. choose an affine atlas {U_i | i = 1, 2, 3, ..., n} and set

$$C_i := U_i - (\sum_{j=1}^{i-1} U_j)$$

- ► ∑ⁿ_{i=1}[C_i], as element of SK(Constr_k), is independent of decomposition chosen
- α_S is compatible with + and ×.

Proposition

$$SK(Var_k) \xrightarrow{\alpha_S} SK(Constr_k)$$

is onto (in every characteristic).

Use the fact that any constructible subset of \mathbb{A}_k^n can be stratified as a disjoint union of locally closed subvarieties of \mathbb{A}_k^n .

Key fact (cf. Zariski's main theorem) Let V, W be irreducible varieties and $V \xrightarrow{f} W$ a separable morphism that induces a bijection on k-points. Assume W is normal. Then f is an isomorphism.

Corollary Let $V \xrightarrow{f} W$ be a separable morphism that induces a bijection $V(k) \rightarrow W(k)$ on *k*-points. Then there exist stratifications of *V* and *W* into locally closed subvarieties

$$V = \bigsqcup_{i=1}^{n} V_i$$
 resp. $W = \bigsqcup_{i=1}^{n} W_i$

such that f restricts to an isomorphism $V_i \rightarrow W_i$ for i = 1, 2, ..., n. Hence [V] = [W] in $SK(Var_k)$.

Corollary Let $V \xrightarrow{f} W$ be a separable morphism that induces a bijection $V(k) \rightarrow W(k)$ on k-points. Then [V] = [W] in $SK(Var_k)$.

Corollary When char(k)=0,

$$SK(Var_k) \xrightarrow{\alpha_S} SK(Constr_k)$$

is into.

Remark If char(k)=0 and $V \xrightarrow{f} W$ is a morphism of varieties that induces a bijection on *k*-points and is smooth at some point $x \in V$, then on an open neighborhood U of x, $f|_U$ is an isomorphism.

When char(k)=0, one can then use generic smoothness too to prove that $SK(Var_k) \xrightarrow{\alpha_S} SK(Constr_k)$ is injective.

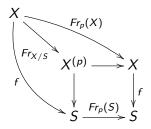
Proposition

$$SK(Var_k) \xrightarrow{\alpha_S} SK(Constr_k)$$

is not injective.

Enough to give a morphism of varieties $f : X \to Y$ such that $[X] \neq [Y]$ in $SK(Var_k)$ but f induces a bijection $X(k) \to Y(k)$ on k-points, since this will ensure $\alpha_S[X] = \alpha_S[Y]$ in $SK(Constr_k)$.

Consider the diagram of schemes over \mathbb{F}_p



where Fr_p is the absolute Frobenius, $X^{(p)}$ is the pullback, and the relative Frobenius $Fr_{X/S}$ is the induced map into the pullback. When S = spec(k) for a perfect field k and X is a variety over k, $Fr_{X/S}$ induces a bijection $X(k) \to X^{(p)}(k)$. Let k be algebraically closed of positive characteristic, and let E be an elliptic curve with j-invariant $j_E \in k$. The Frobenius twist $E^{(p)}$ of E has j-invariant $(j_E)^p$. The relative Frobenius

 $Fr: E \to E^{(p)}$

induces an isomorphism on k-points, so $\alpha_S[E] = \alpha_S[E^{(p)}]$ in $SK(Constr_k)$. If $j_E \neq (j_E)^p$, then E and $E^{(p)}$ are not isomorphic over k. It follows that $[E] \neq [E^{(p)}]$ in $SK(Var_k)$: two complete, irreducible curves represent the same class in $SK(Var_k)$ iff they are isomorphic.

$$SK(Var_{k}) \xrightarrow{\alpha_{5}} SK(Constr_{k})$$

$$\downarrow^{gr(var)} \qquad \qquad \downarrow^{gr(constr)}$$

$$K(Var_{k}) \xrightarrow{\alpha} K(Constr_{k})$$

Theorem (Karzhemanov 2014; Borisov 2015) Over the complex numbers, gr(var) is not injective.

In positive characteristics ...

- is gr(var) injective? (probably not!)
- is α injective? (probably not!)
- is there a decent description of the kernel of *α_S*?
 For example: it is the semiring congruence generated by those pairs (*X*, *Y*) where there exists a universal homeomorphism *X* → *Y*.