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model theory  algebraic geometry

I First order logic: language contains relation, constant and
function symbols; only allows ∀ and ∃ quantifiers ranging over
the domain of interpretation

I ‘Theory’ is a set of first order axioms in a given language

I Can axiomatize most algebraic structures (e.g: ring, field,
difference field; algebraically closed field, real closed field;
category, groupoid; metric space) this way

I No obvious first order axiomatization for: noetherian ring;
topological space; manifold; variety; ringed space; scheme;
complete metric space
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model theory, ca. 1950 – 1965

I Strong set-theoretical flavor. Motivating question: given a
theory T and infinite cardinal κ, what is the cardinality of the
set of isomorphism classes of models of T of size κ?

I Take T to be the theory of algebraically closed fields of a
specific characteristic, κ an uncountable cardinal. Any two
models of T of size κ are isomorphic (since they must have
the same transcendence degree, namely κ, over the prime
field). This is a rare phenomenon!

I  Lós’s conjecture: Let T contain countably many axioms.
Suppose that for at least one uncountable κ, T has a unique
isomorphism class of models of cardinality κ . Then, for every
uncountable κ, T has a unique isomorphism class of models
of cardinality κ.
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model theory, ca. 1965 – 1990

I Morley (1966) proves  Lós’s conjecture. Major contribution:
identifies a class of theories T whose models admit a
structure theory of ‘transcendence degree’ similar to those of
algebraically closed fields. (These theories are called ω-stable.)

I Vast technical elaboration of machinery of stability by Shelah,
Baldwin, Lachlan, and others. Solution of the ‘spectrum
problem’: how many isomorphisms classes of models can a
theory have in uncountable cardinalities.

I Interest shifts to understanding the fine structure of specific
models of specific types of theories.
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model theory, ca. 1990 – 2000
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geometry

A model-theoretic geometry consists of a set X (“points”) and for
each n ∈ N, a set of subsets of X n, denoted Bn (“ definable
subsets of X n ”) such that

I Bn is closed under boolean operations in X n

I if U ∈ Bn and V ∈ Bm then U × V ∈ Bn+m

I if U ∈ Bn then pr(U) ∈ Bm for any projection pr : X n → Xm

I diagonals belong to Bn; singletons belong to B1.

See van den Dries: Tame geometry and o-minimal structures for a
minimal set of axioms.
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associated category

Let X , Bn, n ∈ N be a model-theoretic geometry. Introduce the
category

Def(X) with

{
objects = definable sets (i.e. elements of Bn)

morphisms = definable functions

i.e. a morphism from a definable U ⊆ X n to a definable V ⊆ Xm is
a function f : U → V whose graph belongs to Bn+m.
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geometry defined by a first-order language

Let L be a first-order signature (set of constant, function and
relation symbols), and let the set X be equipped with
interpretations of these symbols. For U ⊆ X n, let

U ∈ Bn iff U = { x ∈ X n | X |= φ(x) }

for some first-order formula φ in the signature L (allowing
parameters form X ), with free variables from among the
x = 〈x1, x2, . . . , xn〉.
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motivating example: SemiLinR

underlying set: R; language: +, scalar multiplication, < =

I can define half-spaces {x | 〈a, x〉 < b}, affine subspaces and
their finite boolean combinations; and via first order formulas,
only these

I objects of SemiLinR are finite boolean combinations of
polytopes (possibly unbounded)

I morphisms of SemiLinR are “piecewise linear” functions (i.e.
set-functions whose graph belongs to SemiLinR; need not be
continuous!)

I the n-simplex ∆n and [0, 1]n are isomorphic in SemiLinR (fun!)
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motivating example: FO(k)

Let k be a field and let FO(k) be the geometry of first order
definable sets over k, in the language of + · =

Best understood when k is a local field, or an algebraically closed
field (or “close” to being algebraically closed: pseudo-finite,
pseudo-algebraically closed etc . . . )
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examples of geometries: SemiAlgR

Consider FO(R). Relation x < y is definable as
x 6= y ∧ ∃z(x + z2 = y). So FO(R) contains all semi-algebraic sets
and in fact, coincides with semi-algebraic sets.

I subset of Rn is semi-algebraic if it can be written as a finite
boolean combination of sets of the form {x | p(x) > 0}, where
p(x) is a polynomial

I projection of semi-algebraic set is semi-algebraic (Seidenberg),
equivalently: the subset of Rn defined by any first order
formula in the above language is semi-algebraic (Tarski)

I objects of FO(R) = SemiAlgR are semi-algebraic subsets of Rn

I morphisms are set-functions with semi-algebraic graph (need
not be continuous!)
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examples of geometries: Constrk

Let k be an algebraically closed field. FO(k) will coincide with
Constrk , the category whose

I objects are constructible subsets of kn (closed under
projection by Chevalley’s theorem; Tarski also proves that any
subset of kn definable via a first order formula in the above
language, is constructible)

I morphisms are set-functions with constructible graph (need
not be continuous!)
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main problems concerning the category of definable sets

I Does it have quotients of equivalence relations?

I Find a notion of ‘dimension’ for objects

dimension will be a homomorphism from the Grothendieck semiring
to some semi-lattice

I Find a notion of ‘size’ for objects

(finitely additive) measure will be a homomorphism from the
Grothendieck group to some abelian group; Euler characteristic will
be homomorphism from the Grothendieck ring to some ring

I How do these invariants vary in families?

I Is there a field (perhaps even algebraically closed) among the
objects of Def(X)?

I What are (abelian) group objects in Def(X)?
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model theory, 2000 – present

Identify combinatorial conditions on first-order theories T that
ensure ‘nice solutions’ to the main problems.
http://www.forkinganddividing.com
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distributive categories from model-theoretic structures

Proposition Def(X)

I has terminal object and pullbacks (so finite limits);
they are computed as in Set

I has finite coproducts

I is distributive: the canonical maps

∅ → X ×∅

X × Y t X × Z → X × (Y t Z )

are isomorphisms

I is boolean (subobject posets are boolean algebras; every
subobject is a coproduct summand)
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Grothendieck (semi)ring of a (small) distributive category C
SK (C) is the semiring whose elements are isomorphism classes [X ]
of objects X , with [X ] · [Y ] := [X × Y ] and [X ] + [Y ] := [X t Y ].

K (C) is the abelian group generated by isomorphism classes [X ] of
objects X , with the relations [X t Y ] = [X ] + [Y ]. Multiplication
is induced by [X ] · [Y ] = [X × Y ].

• Semiring is a ‘ring without additive inverses’.

• There are adjoint functors

Ring
groth

�
inc

SemiRing

and K (C) = groth
(
SK (C)

)
.

• Schanuel (1990) calls SK (C) the “Burnside rig of C” in his
pioneering article Negative sets have Euler characteristic and
dimension.
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Theorem (Lojasiewicz; Hironaka, ca. 1960) The inclusion of
categories SemiLinR ↪→ SemiAlgR induces isomorphisms

SK (SemiLinR)
=→ SK (SemiAlgR)

Theorem (Schanuel 1990)
SK (SemiLin) is a finitely presentable semiring, isomorphic to

N[X ]/(X = 2X + 1).

Theorem (Schanuel 1990; o-minimal: van den Dries, 1998)
There is a monomorphism

SK (SemiAlg)
dim×eu−−−−−→

{
N ∪ −∞

}
〈+,max〉 × Z

where dim is topological dimension and eu is the combinatorial
Euler characteristic (to be defined momentarily).
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Schanuel’s presentation

Commutative diagram

N[X ]/(X = 2X + 1) //
deg ×

{
(f (X ) 7→f (−1)

}
//

X 7→(0,1) )) ))

N−∞ × Z

SK (SemiAlg)

dim×eu

77

Degree-wise induction shows top arrow injective; left arrow
surjective, hence isomorphism.
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from semiring to ring

Commutative diagram

SK (SemiAlg)
dim×eu //

groth

��

{
N ∪ −∞

}
× Z

groth

��
K (SemiAlg)

eu // Z

groth preserves products. It need not preserve monos, but an easy
argument shows that in the present case, the bottom arrow is an
isomorphism.
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the combinatorial Euler characteristic

Let X be semi-algebraic and (V ,S) an open-cell complex such that
X is semi-algebraically homeomorphic to |S|.

Definition eu(X ) =
∑

U∈S(−1)dim(U)

Theorem eu(X ) is independent of the open-cell decomposition
chosen.

The proof needs that any two semi-algebraic open-cell
decompositions have a common semi-algebraic refinement.
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Euler-Poincaré characteristic

Let F be any field. Let H∗(−;F) denote sheaf (or equivalently,
singular) cohomology and let H∗c (−;F) denote cohomology with
compact support. Let X be a semi-algebraic set.

If X is locally compact,

eu(X ) = χc(X ) =

dim(X )∑
i=0

(−1)i dimF H i
c(X ;F).

Follows from H∗c long exact sequence of U ⊂ X where U is open, X
Hausdorff, locally compact; cell decomposition of X and induction.
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embarrassing!

I Is eu(X ) = χc(X ) for all semi-algebraic X , not just locally
compact ones? Is there a cohomological interpretation of
eu(X ) valid for all X ?

I χc is a proper (topological) homotopy invariant. Is that true
for eu(X ) as well?

Theorem (TB, 2011) If X ,Y are semi-algebraic (or more
generally, o-minimal, belonging to possibly two distinct o-minimal
structures) and topologically homeomorphic then eu(X ) = eu(Y ).

Proof reduces to locally compact case with the help of an
intrinsically defined stratification of o-minimal sets.

Remark Already two polyhedra can be topologically
homeomorphic but not semi-algebraically so (Milnor,
counterexample to the polyhedral Hauptvermutung, 1961).
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non-archimedean example

Recall that FO(Qp) is the geometry of subsets of (Qp)n that are
first order definable in the language + · =.

Theorem (Clucker–Haskell 2000) The Grothendieck ring of
FO(Qp) is trivial.

When p 6= 2

Zp =
{

x ∈ Qp | ∃y ∈ Qp(y2 = 1 + px2)
}

When p = 2

Z2 =
{

x ∈ Q2 | ∃y ∈ Q2(y3 = 1 + 2x3)
}

So Zp is an object of FO(Qp).
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non-archimedean example

Zp is an object of FO(Qp). Clucker and Haskell then give an
explicit bijection between Zp − {0} and Zp in FO(Qp).

In any distributive category C, if for some object Z the objects
Z − {pt} and Z are isomorphic, then [pt] = [∅] in K (C), so the
Grothendieck ring K (C) is trivial.
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Grothendieck’s Grothendieck ring of varieties

For any field k , let SK (Vark) be the semiring with generators the
varieties over k and relations

[X ] = [Y ] if X and Y are isomorphic over k

[X ] = [X − U] + [U]

for every open subvariety U of X with complement X − U.

The product of [X ] and [Y ] is [X ⊗k Y ].

K (Vark) is the ring generated by the same generators and relations.
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back to FO(k) = Constrk

Let k be algebraically closed. There’s a natural homomorphism

SK (Vark)
αS−→ SK (Constrk)

Theorem (TB 2013) αS is an isomorphism when char(k) = 0.
It is surjective but not injective when char(k) > 0.

Corollary (folk; Sebag-Nicaise 2011) The model-theorist’s
Grothendieck ring of the field k and Grothendieck’s Grothendieck
ring of varieties over k , are isomorphic for k algebraically closed of
characteristic 0.
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the comparison homomorphism

SK (Vark)
αS−→ SK (Constrk)

Given variety X , choose a decomposition (as point set)
X =

⊔n
i=1 Ci into pairwise disjoint affine constructible sets and

send [X ] to
∑n

i=1[Ci ] ∈ SK (Constrk).

I such decompositions always exist; e.g. choose an affine atlas
{Ui | i = 1, 2, 3, . . . , n} and set

Ci := Ui − (
i−1∑
j=1

Uj)

I
∑n

i=1[Ci ], as element of SK (Constrk), is independent of
decomposition chosen

I αS is compatible with + and ×.
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surjectivity

Proposition
SK (Vark)

αS−→ SK (Constrk)

is onto (in every characteristic).

Use the fact that any constructible subset of An
k can be stratified

as a disjoint union of locally closed subvarieties of An
k .
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role of separability

Key fact (cf. Zariski’s main theorem) Let V , W be irreducible

varieties and V
f−→W a separable morphism that induces a

bijection on k-points. Assume W is normal. Then f is an
isomorphism.

Corollary Let V
f−→W be a separable morphism that induces a

bijection V (k)→W (k) on k-points. Then there exist
stratifications of V and W into locally closed subvarieties

V =
n⊔

i=1

Vi resp. W =
n⊔

i=1

Wi

such that f restricts to an isomorphism Vi →Wi for
i = 1, 2, . . . , n. Hence [V ] = [W ] in SK (Vark).
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injectivity

Corollary Let V
f−→W be a separable morphism that induces a

bijection V (k)→W (k) on k-points. Then [V ] = [W ] in
SK (Vark).

Corollary When char(k)=0,

SK (Vark)
αS−→ SK (Constrk)

is into.
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role of smoothness

Remark If char(k)=0 and V
f−→W is a morphism of varieties

that induces a bijection on k-points and is smooth at some point
x ∈ V , then on an open neighborhood U of x , f |U is an
isomorphism.

When char(k)=0, one can then use generic smoothness too to

prove that SK (Vark)
αS−→ SK (Constrk) is injective.
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positive characteristics

Proposition
SK (Vark)

αS−→ SK (Constrk)

is not injective.

Enough to give a morphism of varieties f : X → Y such that
[X ] 6= [Y ] in SK (Vark) but f induces a bijection X (k)→ Y (k) on
k-points, since this will ensure αS [X ] = αS [Y ] in SK (Constrk).
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relative Frobenius

Consider the diagram of schemes over Fp

X

f

((

Frp(X )

$$FrX/S
!!
X (p)

��

// X

f
��

S
Frp(S) // S

where Frp is the absolute Frobenius, X (p) is the pullback, and the
relative Frobenius FrX/S is the induced map into the pullback.
When S = spec(k) for a perfect field k and X is a variety over k ,
FrX/S induces a bijection X (k)→ X (p)(k).
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twists of elliptic curves

Let k be algebraically closed of positive characteristic, and let E be
an elliptic curve with j-invariant jE ∈ k . The Frobenius twist E (p)

of E has j-invariant (jE )p. The relative Frobenius

Fr : E → E (p)

induces an isomorphism on k-points, so αS [E ] = αS [E (p)] in
SK (Constrk). If jE 6= (jE )p, then E and E (p) are not isomorphic
over k . It follows that [E ] 6= [E (p)] in SK (Vark): two complete,
irreducible curves represent the same class in SK (Vark) iff they are
isomorphic.
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known and unknown

SK (Vark)
αS //

gr(var)
��

SK (Constrk)

gr(constr)
��

K (Vark)
α // K (Constrk)

Theorem (Karzhemanov 2014; Borisov 2015)
Over the complex numbers, gr(var) is not injective.

In positive characteristics . . .

I is gr(var) injective? (probably not!)

I is α injective? (probably not!)

I is there a decent description of the kernel of αS?
For example: it is the semiring congruence generated by those
pairs 〈X ,Y 〉 where there exists a universal homeomorphism
X → Y .
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