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set-up

I work topologically (over R, the real reals)
could also take real-closed base field

I work in the affine semi-algebraic setting
could extend to semi-algebraic spaces, or

o-minimal expansion of a real-closed field

category saR

{
objects: affine semi-algebraic sets

morphisms: continuous semi-algebraic maps
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the combinatorial euler characteristic

Theorem (Hironaka; Delfs, Knebusch; Schanuel; van den Dries):

There is a unique map eu: {iso classes saR} → Z such that

• eu(X ) = eu(Y ) + eu(X − Y ) for semi-algebraic Y ⊂ X

• eu(X × Y ) = eu(X ) eu(Y )

In fact

eu(X ) =
∑

α∈cell(X )

(−1)dimα

in any decomposition of X into open semi-algebraic cells.

Tibor Beke Finitely additive measures on o-minimal sets



Cohomological and combinatorial Euler characteristics
Schanuel’s category

Finitely additive measures on o-minimal sets

compact
locally compact
general

cohomological euler characteristics

Problem: Find a cohomology theory H∗ : saop
R → K-Vect such

that
eu(X ) = χ(X )

for all semi-algebraic X .

χ(X ) =
∞∑

i=0

(−1)i dimK H i (X )
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what is a cohomology theory? (wishlist)

I graded contravariant functor H i : saR → K-Vect

(K : field, not necessarily of characteristic zero; i > 0)

I Mayer-Vietoris long exact sequence

. . .→ H i (X ∪ Y )→ H i (X )⊕ H i (Y )→ H i (X ∩ Y )→ . . .

for certain subspaces X , Y of X ∪ Y

whence χ(X ∪ Y ) = χ(X ) + χ(Y )− χ(X ∩ Y )
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what is a cohomology theory? (wishlist, cont’d)

I Künneth theorem H∗(X × Y ) = H∗(X )⊗K H∗(Y )

i.e. Hn(X × Y ) =
⊕

i+j=n

H i (X )⊗K H j (Y )

whence
χ(X × Y ) = χ(X )χ(Y ).

I for a fibration F // X

��

B
local trivialization, Künneth and Mayer-Vietoris give

χ(X ) = χ(F )χ(B).
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what is a cohomology theory? (wishlist, cont’d)

I dimK H i (X ) = 0 for i > dim(X )

I H∗(X ) is a graded-commutative ring

I there are cohomology operations H∗(X )→ H∗(X )

(e.g. Steenrod operations, when coefficients are Z/p)

I relative theories (cohomology of a pair, cohomology for spaces
over a base; equivariant versions) etc
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what is the question?

Find a cohomology theory H∗ : saop
R → K-Vect such that

eu(X ) = χ(X ) for all semi-algebraic X .

(i) compact X

(ii) locally compact X

(iii) general (not loc. compact) X
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what is the answer

Find a cohomology theory H∗ : saop
R → K-Vect such that

eu(X ) = χ(X ) for all semi-algebraic X .

(i) for compact X : any of simplicial, singular, sheaf, Čech,
Alexander-Spanier cohomology

(ii) for locally compact X : singular cohomology with compact
support; sheaf cohomology with compact support

(iii) for general (not loc. compact) X : unclear (doesn’t seem to
have been addressed in the literature!)
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the compact case: simplicial cohomology

A (“complete”, “combinatorial”, “abstract”) simplicial complex S
is a set of subsets of a (finite) set (“vertices”) such that if X ∈ S
and Y ⊂ X then Y ∈ S. Has geometric realization |S| which is a
compact polyhedron. Any compact semi-algebraic set is
semi-algebraically homeomorphic to such an |S|.

Theorem (Poincaré) eu(|S|) = χsimp(|S|)

where χsimp is the cohomological euler characteristic associated to
simplicial cohomology.
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the compact case: simplicial cohomology

proof consider chain complex for computing H∗simp(X )

. . .→ Ci−1
∂→ Ci

∂→ Ci+1 → . . .

with Ci the K -vectorspace on the set of closed i-simplices as basis

eu(X ) =
∑

α∈ open cell(X )

(−1)dimα =
∑

α∈closed cell(X )

(−1)dimα =

=
∑

(−1)i dimK Ci =
∑

(−1)i dimK H i
simp = χsimp(X )
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but is it a homeomorphism invariant?

Suppose the compact polyhedra |S1|, |S2| are homeomorphic. Are
they combinatorially homeomorphic (i.e. are some subdivisions of
S1 and S2 isomorphic as simplicial complexes?)

no (Milnor, 1961) The topological Hauptvermutung is false! Gave
explicit counterexamples

yet if |S1|, |S2| are homeomorphic then H∗simp(|S1|) = H∗simp(|S2|)
(since H∗simp(−) = H∗sing(−) = H∗sheaf(−) for finite CW-complexes)

aside Milnor’s counterexample implies that two polytopes (of
dimension > 6) can be topologically homeomorphic without being
o-minimally so
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what goes wrong with non-compact spaces

for X convex, eu(X ) can take on any integer value while χ(X ) = 1
for any cohomology theory satisfying the Eilenberg-Steenrod
axioms (in particular, homotopy invariance)
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the locally compact case, sheaf-theoretically (1)

Hn
c (X ; A) is the n-th derived functor of the global sections with

compact support functor Γc : Sh(X)→Ab (evaluated at A)

I functorial w.r.t. proper maps only (and homotopy invariant
w.r.t. proper homotopy only)

I for Hausdorff, compact spaces, H∗c (−) = H∗(−)

I for Hausdorff, locally compact X , open i : U ⊂ X with closed
complement j : Z ⊂ X , long exact sequence

. . .→ Hn
c (U, i∗A)→ Hn

c (X ,A)→ Hn
c (Z , j∗A)→ . . .
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the locally compact case, sheaf-theoretically (2)

I when A is the constant sheaf K , long exact sequence yields
χc (X ) = χc(U) + χc (Z )

I applying this to the inclusion of a Hausdorff, locally compact
space X in its one-point (Čech) compactification X +

χ(X +) = χc (X ) + 1

I therefore χc

(
(0, 1)i

)
= (−1)i

I by induction on an open-cell decomposition,

eu(X ) = χc (X )

for locally compact, semi-algebraic X .
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the locally compact case, simplicially (1)

• complete simplicial complex S: set of subsets of a (finite) set
such that if X ∈ S and Y ⊂ X then Y ∈ S.

• locally complete simplicial complex S: set of subsets of a (finite)
set such that if X ⊂ Y ⊂ Z and X ,Z ∈ S then Y ∈ S. Its
geometric realization |S| is a locally compact polyhedron, and any
locally compact semi-algebraic set is semi-algebraically
homeomorphic to such an |S|.
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the locally compact case, simplicially (2)

S: locally complete simplicial complex

place a linear order ≺ on the vertices of S (to make life simple)

Ci : K -vectorspace with basis
{

X ∈ S | card(X ) = i + 1
}

define boundary Ci
∂→ Ci−1 by ∂ =

∑i
j=0(−1) j ∂j

where for k0 ≺ k1 ≺ · · · ≺ ki

∂j〈k0, k1, . . . , ki 〉 ={
〈k0, k1, . . . , k̂j , . . . , ki 〉 if 〈k0, k1, . . . , k̂j , . . . , ki 〉 ∈ S
0 otherwise.
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the locally compact case, simplicially (3)

Prop ∂ ◦ ∂ = 0.

the K -linear dual of the above formulas defines a cochain complex
whose homology is (by definition) H∗cs(S) (“compactly supported
simplicial cohomology”)

Theorem For any locally complete simplicial complex S,

H∗cs(S) = H∗c (|S|).

Proof induction on cell decomposition; analogous to isomorphism
of singular and cellular cohomology for CW-complexes
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the locally compact case, simplicially (example)

S =
{
〈2, 3, 5〉, 〈2, 3〉, 〈2, 5〉, 〈1, 2〉, 〈2, 4〉, 〈2〉

}
∂〈2, 3, 5〉 = −〈2, 5〉+ 〈2, 3〉

∂〈2, 5〉 = −〈2〉

∂〈2, 3〉 = −〈2〉

∂〈1, 2〉 = 〈2〉

∂〈2, 4〉 = −〈2〉

〈1, 2〉+ 〈2, 4〉 is a cycle representing one of the generators of H1
cs

eu = −2 = χcs realized combinatorially!
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three drawbacks of simplicial complexes (1)

No canonical boundary (save with mod 2 coefficients)!

? •

∂({?, •}) = {?} − {•} ?

or

∂({?, •}) = {•} − {?} ?
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three drawbacks of simplicial complexes (2)

A morphism of simplicial complexes S1 → S2 is a map of vertices
that takes a distinguished subset into a distinguished subset (not
necessarily injectively).

Categorical products don’t exist!

• • • • •

or ?

• •

����������
• • •

::::::::::

• •
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one barycentric subdivision solves some of these
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three drawbacks of simplicial complexes (3)

but no morphism between a complex and its subdivision
(underlying their topological isomorphism)
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aside: simplicial sets

simplicial set: functor ∆op →Set

∆ = category

{
objects {0, 1, . . . , n} n ∈ N
morphisms non-decreasing maps

functor { simplicial complexes } nerve−−−→ { simplicial sets }

(nerve of the poset of faces; also describable via the local ordering
induced on the vertices of the first subdivision of the simplicial
complex)
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where we are

space compact saR loc. compact saR

triangulated complete locally complete
model simplicial complex simplicial complex

discrete model simplicial set incomplete
simplicial set (?)

cohomology sheaf cohomology sheaf cohomology
theory (topological) with compact support

cohomology simplicial compactly supported
theory (combinatorial) cohomology simplicial cohomology
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general semi-algebraic sets (1)

• complete simplicial complex S: set of subsets of a (finite) set
such that if X ∈ S and Y ⊂ X then Y ∈ S.

• locally complete simplicial complex S: set of subsets of a (finite)
set such that if X ⊂ Y ⊂ Z and X ,Z ∈ S then Y ∈ S.

• open-cell complex S: set of subsets of a (finite) set. Its
geometric realization |S| is a piecewise linear semi-algebraic set,
and any semi-algebraic set is semi-algebraically homeomorphic to
such an |S|.
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general semi-algebraic sets (2)

{
〈1, 2, 3〉, 〈1, 2〉, 〈1〉

}
no evident boundary operator ∂ on cells such that ∂ ◦ ∂ = 0

Tibor Beke Finitely additive measures on o-minimal sets



Cohomological and combinatorial Euler characteristics
Schanuel’s category

Finitely additive measures on o-minimal sets

compact
locally compact
general

general semi-algebraic sets (confession)

• possibly one has eu(X ) = χc (X ) for all semi-algebraic X
(whether locally compact or not)

hard to determine H∗c (X ) for a topological space that’s not locally
compact!

(compact subsets do not then form a “paracompactifying family of
supports”; some basic sheaf-theoretic tricks break down, e.g. soft
sheaves need not be acyclic etc)
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general semi-algebraic sets (3)

Prop Any semi-algebraic space X has a canonical decomposition
(as set) X = X0 t X1 t X2 t · · · t Xn such that

I the Xk are semi-algebraic and locally compact

I Xk is open and dense in ti>k Xi

I dim Xk − dim Xk+1 > 2

I if X is semi-algebraically triangulated, the decomposition
respects the triangulation.

proof iterate

X0 :=
{

x ∈ X | for some ε > 0, X ∩ D(x , ε) is compact
}
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general semi-algebraic sets (4)

definition H∗sa(X ) :=
⊕

i∈strata H∗c (Xi )

I eu(X ) = χsa(X ) for all semi-algebraic X

I H∗sa(X ) = H∗c (X ) for X locally compact

I H∗sa(−) has main properties of compactly supported sheaf
cohomology

I is describable combinatorially if X is semi-algebraically
triangulated

I but functoriality is restricted.
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Schanuel’s category S

objects X ⊆ Rn defined by a
boolean combination of linear inequalities

morphisms functions with definable graph

Theorem (Schanuel) K0(S) = Z⊕ Z
The Grothendieck semiring is generated by (0, 1) and (0,∞).

Theorem There exist two cohomology theories H∗0 (−), H∗∞(−) on
Schanuel’s category such that eu(X ) = 〈H∗0 (X ); H∗∞(X )〉 for every
X ∈ S.

Under the inclusion i : S ⊂ saR, H∗sa(iX ) = H∗0 (X )⊕ H∗∞(X )
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finitely additive measures on o-minimal sets

Fix an o-minimal expansion of 〈R,+,×, >, 1, 0〉 and let B be the
collection of bounded definable sets. A (real-valued) finitely
additive measure is a map µ : B → R satisfying

I µ(X t Y ) = µ(X ) + µ(Y )

I µ(X ) = µ(Y ) if X ,Y are isometric.

Goal: investigate a set of particularly nice finitely additive
measures, the quermassintegrals or Hadwiger measures µi (i ∈ N).
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Hadwiger measures: examples

closed unit disk

µ0 = 1

µ1 = 2π

µ2 = π

µi = 0 for i > 2

NB: this is the high school normalization of µ1
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Hadwiger measures: examples (cont’d)

open unit disk

µ0 = 1

µ1 = −2π

µ2 = π

µi = 0 for i > 2

NB: this is the high school normalization of µ1
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Hadwiger measures: examples (cont’d)

additivity of “perimeter” (closed lune + open unit disk)
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Hadwiger measures: examples (cont’d)

arc length is twice the usual one?
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Hadwiger’s formula (1)

Let X ⊂ Rn be a bounded definable set and 0 6 k 6 n.

µk (X ) :=

∫
H∈AffGr(n,n−k)

eu(X ∩ H) dνn,n−k

where AffGr(n, n − k) is the affine Grassmannian (the space of
affine subspaces of dimension n − k in Rn) and νn,n−k is a suitable
E (n)-invariant measure on it. (E (n) is the group of euclidean
motions of Rn.)

For X ⊂ Rn, set µk (X ) = 0 for k > n.
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Hadwiger’s formula (2)

µk (X ) :=

∫
H∈AffGr(n,n−k)

eu(X ∩ H) dνn,n−k

I for each i ∈ Z, the locus{
H ∈ AffGr(n, n − k) | eu(X ∩ H) = i

}
is definable (hence

νn,n−k -measurable)

I finite additivity of µk follows from finite additivity of eu

I rigid motion invariance of µk for X ⊂ Rn follows from rigid
motion invariance of νn,n−k

I Careful normalization of the νn,n−k is needed to ensure that
µk is independent of the ambient dimension n.
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Hadwiger measures: basic properties

I µ0(X ) = eu(X )

I µk (X ) is very non-trivial for 0 < k < dim(X )

I µk (X ) is the k-dim Lebesgue-Minkowski content when
k = dim(X )

I µk (X ) = 0 for k > dim(X ).

I Scales as µk (λX ) = λkµk (X ) for X of all dimensions.
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Hadwiger measures: history

I Steiner: intrinsic volumes of convex bodies

I Minkowski: mixed volumes

I analytic formulas for the euler characteristic and other
intrinsic volumes (Gauss–Bonnet: smooth surfaces in R3;
Chern: Riemannian manifolds; Federer: generalized curvature
formulas; Fu: extension to certain spaces with singularities
etc; Alesker: algebras of valuations)

I Hadwiger: Hadwiger’s formula; axiomatic characterization of
Hadwiger measures on convex bodies

on the positive side (e.g. valuations on the lattice of finite unions
of compact, convex subsets of euclidean space) no need to stay
within o-minimal structures
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Hadwiger measures: countable additivity fails

There are counterexamples even within Schanuel’s category.
For µ0 = eu:

(−∞,+∞) = . . . (−2,−1)[−1](−1, 0)[0](0, 1)[1](1, 2) . . .

−1 = · · · − 1 + 1− 1 + 1− 1 . . .

To get a counterexample for e.g. µ1, embed an unrectifiable
boundary inside a definable set:

closed

open
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Hadwiger measures: variation with parameters

Let X
f→ Y be definable.

Then Y → Z taking y 7→ eu
(
f −1(y)

)
is definable.

guess: for k > 0, in no o-minimal expansion of the reals do the µk

vary definably in all definable families.

Tibor Beke Finitely additive measures on o-minimal sets



Cohomological and combinatorial Euler characteristics
Schanuel’s category

Finitely additive measures on o-minimal sets

examples
Hadwiger’s formula
to do

Hadwiger measures: to do (1)

• Is there a “natural” boolean algebra of subsets of the Rn (closed
under products but not necessarily projections) to which the
Hadwiger measures on various o-minimal geometries can be
consistently extended?

“natural” := the condition for a set to be Hadwiger measurable
should be formulable in terms of (local or global) geometric
properties of the set (as opposed to its generating an o-minimal
expansion etc)
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Hadwiger measures: to do (2)

I define K (defn) as the free abelian group on{
[X ] | bounded definable X ⊂ Rn

}
modulo

[X ] = [Y ] + [X − Y ] for X ⊂ Y and
[X ] = [Y ] for X ,Y isometric

I define the scissors group Sci(defn) as K (defn) modulo
[Y ] = 0 for dim(Y ) < n

I How big are K (defn) and Sci(defn)? Is the natural map
Sci(polytopesn)→ Sci(defn) injective?

I research originating in Hilbert’s 3rd problem resulted in a lot
of information about scissors congruence groups of polytopes
in various geometries, for example:

the kernel of Sci(polytopes3)
vol−−→ R is uncountable

(detected by Dehn invariants)
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Hadwiger measures: one measure to rule them all

I Prove
µn(X × Y ) =

∑
i+j=n

µi (X )µj (Y ) (∗)

for all definable X ,Y . (Known for convex, compact X ,Y !)

I Set µ(X ) =
∑∞

k=0 µk (X ). Note µ(X ) <∞.

(∗) is same as saying that µ(X × Y ) = µ(X )µ(Y ).

I For any given X , µi (X ) can be reconstructed from the degree
dim(X ) polynomial

µ(λX ) =
∞∑

k=0

λkµk (X )

and its derivatives.
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Hadwiger measures: to do (3)

I theorem: eu is the unique Z-valued finitely additive and
multiplicative homeomorphism invariant of o-minimal sets.

I (should be true) the set of R-valued finitely additive and
multiplicative isometry invariant [continuous] measures on
o-minimal sets is parametrized by one real parameter.

this corresponds to the choice of a scaling parameter c

(equivalently, size of [0, 1]); on convex bodies, the measures∑∞
k=0 ckµk are the only finitely additive-multiplicative ones that are

continuous w.r.t. Minkowski metric

I what “should be true” is quite likely to be false without a
continuity assumption; not clear what form that should take

I but enough to do it for definable convergence of definable
sets — much easier!
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