Name: \qquad

EECE. 3170 Spring 2024
Quiz 2

1. Convert the following numbers from binary to hexadecimal. (4 points each)
a. 1001110001011000
2. 12. 5. 8

0x9C58
b. 1011111011101111
11. 14. 14. 15

0xBEEF
2. Answer the questions below using the memory diagram.

Address				
0×00	0×30	0×54	0×89	$0 \times F F$
0×04	$0 \times A 3$	$0 \times F E$	0×34	$0 \times C 7$
0×08	$0 \times F 5$	$0 \times F A$	0×72	$0 \times B 3$

a. Consider the word that starts at address 0x04:
i. If the word length of the system is 32-bits, what is the word? Is it aligned? (3 points)
0xA3FE34C7, yes because 0×04 is divisible by 4 bytes.
ii. If the word length of the system is 16 -bits, what is the word? Is it aligned? (3 points)
$0 \times A 3 F E$, yes because 0×04 is divisible by 2 bytes.
b. Consider the word that starts at address 0×02 :
i. If the word length of the system is 32-bits, what is the word? Is it aligned? (3 points)
0x89FFA3FE, no because 0×02 is not divisible by 4 bytes.
ii. If the word length of the system is 16 -bits, what is the word? Is it aligned? (3 points)
0×89 FF, yes because 0×02 is divisible by 2 bytes.

Name: \qquad
3. Below are two op-code descriptions from the AVR ISA and their descriptions. In each case, r and d are the two registers the operation is performed on and d is the register where the result is stored. Use this information to answer the following questions.

ADD (add without passing the carry bit out) 0000 11rd dddd rrrr
OR (logical or)
0010 10rd dddd rrrr
Register 0 contains: 00000001
Register 1 contains: 00110100
Register 2 contains: 11000001
Register 3 contains: 11000100
a. What is contained in register 0 after the following op-code is run: (5 points) 0000110000000011

ADD operation
Before:
$R d=R 0=00000001$
$\mathrm{Rr}=\mathrm{R} 3=11000100$
$00000001+11000100=11000101$
RO now contains: 11000101
b. What is contained in register 2 after the following op-code is run: (5 points)

0010100000100001
OR operation
Before:
$R d=R 2=11000001$
$\mathrm{Rr}=\mathrm{R} 1=00110100$
11000001 | $00110100=11110101$
R2 now contains: 11110101

