Differential Equations

Homework 10 (Revised)
(HW 10 will Not be collected but one of the problems will be in Midterm 3)
(HW 10 solution will be available on 4/15)

Note:

- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your HW.
- Several random problems will be graded (1 point each).

1. Determine the period and frequency of the simple harmonic motion (damping coefficient $c=0$) of a $m=0.75 \mathrm{~kg}$ mass on the end of a spring with spring constant $k=48$.

$$
\begin{gathered}
m=0.75, k=48 \\
m u^{\prime \prime}+k u=0 \\
0.75 u^{\prime \prime}+48 u=0 \\
u^{\prime \prime}+64 u=0 \\
r^{2}+64=0 \rightarrow r= \pm 8 i
\end{gathered}
$$

General solution

$$
u(t)=A \cos (8 t)+B \sin (8 t)=C \cos (8 t-\delta),
$$

where

$$
C=\sqrt{A^{2}+B^{2}}, \tan \delta=\frac{B}{A}
$$

The period

$$
T=\frac{2 \pi}{8}=\frac{\pi}{4}
$$

The frequency

$$
f=\frac{1}{T}=\frac{4}{\pi}
$$

2. A mass of $m=3 \mathrm{~kg}$ is attached to the end of a spring that is stretched 0.2 m by a force of 15 N . At a time $t=0$ the body is pulled 1 m , stretching the spring, and set in motion with an initial velocity of $-10 \mathrm{~m} / \mathrm{s}$.
(a) Find $u(t)$

$$
\begin{gathered}
F=-k x \rightarrow-15=-k(0.2) \rightarrow k=\frac{15}{0.2}=75 \\
u(0)=1, u^{\prime}(0)=-10 \\
m=3, k=75 \\
3 u^{\prime \prime}+75 u=0 \\
u^{\prime \prime}+25 u=0 \\
r^{2}+25=0 \rightarrow r= \pm 5 i
\end{gathered}
$$

General solution

$$
\begin{gathered}
u(t)=A \cos (5 t)+B \sin (5 t) \\
u(0)=A \cos 0+B \sin 0=0 \rightarrow A=1 \\
u^{\prime}(0)=-5 A \sin (0)+5 B \cos (0)=-10 \rightarrow B=-2
\end{gathered}
$$

Therefore

$$
u(t)=\cos (5 t)-2 \sin (5 t)=\sqrt{1^{2}+(-2)^{2}} \cos (5 t-\delta)=\sqrt{5} \cos (5 t-\delta)
$$

where

$$
\tan \delta=-\frac{2}{1}
$$

(b) Find the amplitude and period of motion of the body.

Amplitude $=\sqrt{5}$, Period $=\frac{2 \pi}{5}$, frequency $=\frac{5}{2 \pi}$
3. Suppose that the mass in a mass-spring system with $m=25, c=10$, and $k=226$ is set in motion with $u(0)=20$ and $u^{\prime}(0)=41$.
(a) Find the position function $u(t)$ in the form of single cosine function.

$$
\begin{gathered}
m=25, c=10, k=226, u(0)=20, u^{\prime}(0)=41 \\
25 u^{\prime \prime}+10 u^{\prime}+226 u=0 \\
25 r^{2}+10 r+226=0 \\
r=\frac{-10 \pm \sqrt{100-4(25)(226)}}{50}=\frac{-10 \pm \sqrt{-22500}}{50}=\frac{-10 \pm 150 i}{50}=-\frac{1}{5} \pm 3 i
\end{gathered}
$$

General solution

$$
\begin{gathered}
u(t)=A e^{-\frac{1}{5} t} \cos 3 t+B e^{-\frac{1}{5} t} \sin 3 t \\
u(0)=A e^{-0} \cos 0+B e^{0} \sin 0=20 \rightarrow A=20 \\
u^{\prime}(0)=-\frac{1}{5} A e^{0} \cos 0-3 A e^{0} \sin 0-\frac{1}{5} B e^{0} \sin 0+3 B e^{0} \cos 0 \\
=-\frac{1}{5} A e^{0} \cos 0+3 B e^{0} \cos 0=-4+3 B=41 \rightarrow B=15
\end{gathered}
$$

Thus,

$$
u(t)=20 e^{-\frac{1}{5} t} \cos 3 t+15 e^{-\frac{1}{5} t} \sin 3 t
$$

let

$$
C=\sqrt{20^{2}+(15)^{2}}=25
$$

Then
$u(t)=25 e^{-\frac{1}{5} t}\left(\frac{20}{25} \cos 3 t+\frac{15}{25} \sin 3 t\right)=25 e^{-\frac{1}{5} t}(\cos 3 t \cos \delta+\sin 3 t \sin \delta)=25 e^{-\frac{1}{5} t} \cos (3 t-\delta)$,
where

$$
\begin{gathered}
\tan \delta=\frac{15}{20}=\frac{3}{4} \\
\delta=\tan ^{-1}\left(\frac{3}{4}\right) \approx 0.6435
\end{gathered}
$$

Finally,

$$
u(t)=25 e^{-\frac{1}{5} t} \cos (3 t-0.6435)
$$

(b) Find the pseudo-period of the oscillation and time-varying amplitude.
pseudoperiod $=\frac{2 \pi}{3}$, Time-varying amplitude $=25 e^{-\frac{1}{5} t}$
4. A mass $m=1 / 2$ is attached to a spring with spring constant $k=4$ and damping coefficient $c=3$. The mass is set in motion with initial position $u(0)=2$ and initial velocity $u^{\prime}(0)=0$. Find $u(t)$ and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdapmed, write $u(t)$ in the form of $C e^{-p t} \cos \left(\omega_{0} t-\delta\right)$.

$$
\begin{gathered}
m=\frac{1}{2}, c=3, k=4, u(0)=2, u^{\prime}(0)=0 \\
\frac{1}{2} u^{\prime \prime}+3 u^{\prime}+4 u=0 \\
r^{2}+6 r+8=0 \\
(r+2)(r+4)=0 \rightarrow r=-2, r=-4
\end{gathered}
$$

General solution (Overdamped)

$$
\begin{gathered}
u(t)=A e^{-2 t}+B e^{-4 t} \\
u(0)=A e^{0}+B e^{0}=2 \rightarrow A+B=2 \\
u^{\prime}(0)=-2 A e^{0}-4 B e^{0}=0 \rightarrow A+2 B=0 \\
B=-2, A=4
\end{gathered}
$$

Thus,

$$
u(t)=4 e^{-2 t}-2 e^{-4 t}
$$

5. A mass $m=2$ is attached to a spring with spring constant $k=50$ and damping coefficient $c=12$. The mass is set in motion with initial position $u(0)=1$ and initial velocity $u^{\prime}(0)=-7$. Find $\mathrm{u}(\mathrm{t})$ and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdapmed, write $u(t)$ in the form of $C e^{-p t} \cos \left(\omega_{0} t-\delta\right)$.

$$
\begin{gathered}
m=2, c=12, k=50, u(0)=1, u^{\prime}(0)=-7 \\
2 u^{\prime \prime}+12 u^{\prime}+50 u=0 \\
r^{2}+6 r+25=0 \\
r=\frac{-6 \pm \sqrt{36-4(1)(25)}}{2}=\frac{-6 \pm \sqrt{-64}}{2}=-3 \pm 4 i
\end{gathered}
$$

General solution (underdamped)

$$
\begin{gathered}
u(t)=A e^{-3 t} \cos (4 t)+B e^{-3 t} \sin (4 t) \\
u(0)=A e^{-0} \cos 0+B e^{0} \sin 0=0 \rightarrow A=1 \\
u^{\prime}(0)=-3 A e^{0} \cos 0-4 A e^{0} \sin 0-3 B e^{0} \sin 0+4 B e^{0} \cos 0 \\
=-3 A e^{0} \cos 0+4 B e^{0} \cos 0=-3+4 B=-7 \rightarrow B=-1
\end{gathered}
$$

Thus,

$$
u(t)=e^{-3 t} \cos 4 t-e^{-3 t} \sin 4 t
$$

let

$$
C=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}
$$

Then
$u(t)=\sqrt{2} e^{-3 t}\left(\frac{1}{\sqrt{2}} \cos (4 t)+\frac{-1}{\sqrt{2}} \sin (4 t)\right)=\sqrt{2} e^{-3 t}(\cos (4 t) \cos \delta+\sin (4 t) \sin \delta)=\sqrt{2} e^{-3 t} \cos (4 t-\delta)$
where

$$
\tan \delta=\frac{B}{A}=-1 \rightarrow \delta=\frac{3 \pi}{4}
$$

Finally,

$$
u(t)=\sqrt{2} e^{-3 t} \cos \left(4 t-\frac{3 \pi}{4}\right)
$$

Time-varying amplitude $=\sqrt{2} e^{-3 t}$
Pseudo-period $=\frac{2 \pi}{4}$

