Differential Equations
Homework 4
Due Feb. 12, 2024 (Monday)

Note:

e Please show all of your work (writing a list of answers is not sufficient).
e Please indicate the people you worked with.
e Please staple your HW.

e Several random problems will be graded (1 point each).

1. Find the general solution of
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This is a Bernoulli Eq. Let
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Then, the differential equation becomes
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By integrating factor method

where
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3. Find the general solution of
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This is a Bernoulli Eq. Let
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Then, the differential equation becomes
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4. Verify that the given differential equation is exact; then solve it

(4dx — y)dz + (6y — z)dy =0
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Therefore,
F(z,y) =22 —xy+3y* + D

and the solution of the differential equation is
222 —azy+ 32+ D=C— 22> —ay+ 32 =C
5. Verify that the given differential equation is exact; then solve it
(23 + %)dx + (y* +Inz)dy =0
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and the solution of the differential equation is
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6. Verify that the given differential equation is exact; then solve it
(1+ye™)dz + (2y + ze™)dy = 0
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and the solution of the differential equation is

ct+eV+y’+D=C—zx+eV+y*=C
7. Verify that the given differential equation is exact; then solve it

(cosz + Iny)dz + (E +eY)dy =0
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F(z,y) =sinz+zlny+eY+ D

and the solution of the differential equation is
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8. Show that the substitution v = Iny transforms
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into the linear differential equation
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Proof: Let
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Then, the differential equation
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Dividing both sides by y yields
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