Differential Equations

Homework 4
Due Feb. 12, 2024 (Monday)

Note:

- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your HW.
- Several random problems will be graded (1 point each).

1. Find the general solution of

$$
\begin{gathered}
x^{2} y^{\prime}+2 x y=5 y^{3} \\
y^{\prime}+\frac{2}{x} y=\frac{5}{x^{2}} y^{3} \\
\frac{1}{y^{3}} y^{\prime}+\frac{2}{x} \frac{y}{y^{3}}=\frac{5}{x^{2}} \\
y^{-3} y^{\prime}+\frac{2}{x} y^{-2}=\frac{5}{x^{2}}
\end{gathered}
$$

This is a Bernoulli Eq. Let

$$
v=y^{-2} \rightarrow v^{\prime}=-2 y^{-3} y^{\prime} \rightarrow y^{\prime}=-\frac{1}{2} y^{3} v^{\prime}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{-3}\left(-\frac{1}{2} y^{3} v^{\prime}\right)+\frac{2}{x} v=\frac{5}{x^{2}} \\
\left(-\frac{1}{2} v^{\prime}\right)+\frac{2}{x} v=\frac{5}{x^{2}} \\
v^{\prime}-\frac{4}{x} v=-\frac{10}{x^{2}}
\end{gathered}
$$

By integrating factor method

$$
v=\frac{1}{\mu}\left(\int-\frac{10}{x^{2}} \mu d x+C\right)
$$

where

$$
\mu=e^{\int-\frac{4}{x} d x}=x^{-4}
$$

Thus,
$v=x^{4}\left(\int-\frac{10}{x^{2}} x^{-4} d x+C\right)=x^{4}\left(\int-10 x^{-6} d x+C\right)=x^{4}\left(\frac{10}{5} x^{-5}+C\right)=2 x^{-1}+C x^{4}$

$$
y^{-2}=2 x^{-1}+C x^{4}
$$

or

$$
y^{2}=\frac{1}{2 x^{-1}+C x^{4}}=\frac{x}{2+C x^{5}}
$$

or

$$
y= \pm \sqrt{\frac{x}{2+C x^{5}}}
$$

2. Find the general solution of

$$
\begin{gathered}
x^{2} y^{\prime}+2 x y=5 y^{4} \\
y^{\prime}+\frac{2}{x} y=\frac{5}{x^{2}} y^{4} \\
y^{-4} y^{\prime}+\frac{2}{x} y^{-3}=\frac{5}{x^{2}}
\end{gathered}
$$

This is a Bernoulli Eq. Let

$$
v=y^{-3} \rightarrow v^{\prime}=-3 y^{-4} y^{\prime} \rightarrow y^{\prime}=-\frac{1}{3} y^{4} v^{\prime}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{-4}\left(-\frac{1}{3} y^{4} v^{\prime}\right)+\frac{2}{x} v=\frac{5}{x^{2}} \\
\left(-\frac{1}{3} v^{\prime}\right)+\frac{2}{x} v=\frac{5}{x^{2}} \\
v^{\prime}-\frac{6}{x} v=-\frac{15}{x^{2}}
\end{gathered}
$$

By integrating factor method

$$
v=\frac{1}{\mu}\left(\int-\frac{15}{x^{2}} \mu d x+C\right)
$$

where

$$
\mu=e^{\int-\frac{6}{x} d x}=x^{-6}
$$

Therefore,

$$
\begin{gathered}
v=\frac{1}{x^{-6}}\left(\int-\frac{15}{x^{2}} x^{-6} d x+C\right)=x^{6}\left(\int-15 x^{-8} d x+C\right) \\
=x^{6}\left(\frac{15}{7} x^{-7}+C\right)=\frac{15}{7} x^{-1}+C x^{6} \\
y^{-3}=\frac{15}{7} x^{-1}+C x^{6} \rightarrow y=\sqrt[3]{\frac{1}{\frac{15}{7} x^{-1}+C x^{6}}}=\sqrt[3]{\frac{7 x}{15+7 C x^{7}}}
\end{gathered}
$$

3. Find the general solution of

$$
\begin{gathered}
x y^{\prime}+6 y=3 x y^{4 / 3} \\
y^{\prime}+\frac{6}{x} y=3 y^{4 / 3} \\
y^{-4 / 3} y^{\prime}+\frac{6}{x} y^{-1 / 3}=3
\end{gathered}
$$

This is a Bernoulli Eq. Let

$$
v=y^{-\frac{1}{3}} \rightarrow v^{\prime}=-\frac{1}{3} y^{-\frac{4}{3}} y^{\prime} \rightarrow y^{\prime}=-3 y^{\frac{4}{3}} v^{\prime}
$$

Then, the differential equation becomes

$$
\begin{gathered}
y^{-4 / 3}\left(-3 y^{\frac{4}{3}} v^{\prime}\right)+\frac{6}{x} v=3 \\
\left(-3 v^{\prime}\right)+\frac{6}{x} v=3 \\
v^{\prime}-\frac{2}{x} v=-1
\end{gathered}
$$

By integrating factor method

$$
v=\frac{1}{\mu}\left(\int-1 \mu d x+C\right)
$$

where

$$
\begin{gathered}
\mu=e^{\int-\frac{2}{x} d x}=x^{-2} \\
v=\frac{1}{x^{-2}}\left(\int-x^{-2} d x+C\right)=x^{2}\left(\frac{1}{x}+C\right)=x+C x^{2} \\
y^{-\frac{1}{3}}=x+C x^{2} \\
y=\left(x+C x^{2}\right)^{-3}
\end{gathered}
$$

4. Verify that the given differential equation is exact; then solve it

$$
\begin{gathered}
(4 x-y) d x+(6 y-x) d y=0 \\
M=4 x-y, N=6 y-x \\
\frac{\partial}{\partial y} M=-1=\frac{\partial}{\partial x} N=-1, \rightarrow \text { Exact Eq }
\end{gathered}
$$

Thus

$$
\frac{\partial F}{\partial x}=4 x-y \rightarrow F=2 x^{2}-x y+g(y) \rightarrow \frac{\partial F}{\partial y}=-x+g^{\prime}(y)
$$

$$
\begin{gathered}
\frac{\partial F}{\partial y}=6 y-x \\
g^{\prime}(y)=6 y \rightarrow g(y)=3 y^{2}+D
\end{gathered}
$$

Therefore,

$$
F(x, y)=2 x^{2}-x y+3 y^{2}+D
$$

and the solution of the differential equation is

$$
2 x^{2}-x y+3 y^{2}+D=C \rightarrow 2 x^{2}-x y+3 y^{2}=C
$$

5. Verify that the given differential equation is exact; then solve it

$$
\begin{gathered}
\left(x^{3}+\frac{y}{x}\right) d x+\left(y^{2}+\ln x\right) d y=0 \\
M=x^{3}+\frac{y}{x}, N=y^{2}+\ln x \\
\frac{\partial}{\partial y} M=\frac{1}{x}=\frac{\partial}{\partial x} N=\frac{1}{x}, \rightarrow \text { Exact Eq }
\end{gathered}
$$

Thus

$$
\begin{gathered}
\frac{\partial F}{\partial x}=x^{3}+\frac{y}{x} \rightarrow F=\frac{1}{4} x^{4}+y \ln x+g(y) \rightarrow \frac{\partial F}{\partial y}=\ln x+g^{\prime}(y) \\
\frac{\partial F}{\partial y}=y^{2}+\ln x \\
g^{\prime}(y)=y^{2} \rightarrow g(y)=\frac{1}{3} y^{3}+D
\end{gathered}
$$

Therefore,

$$
F(x, y)=\frac{1}{4} x^{4}+y \ln x+\frac{1}{3} y^{3}
$$

and the solution of the differential equation is

$$
\frac{1}{4} x^{4}+y \ln x+\frac{1}{3} y^{3}+D=C \rightarrow \frac{1}{4} x^{4}+y \ln x+\frac{1}{3} y^{3}=C
$$

or

$$
3 x^{4}+12 y \ln x+4 y^{3}=C
$$

6. Verify that the given differential equation is exact; then solve it

$$
\begin{gathered}
\left(1+y e^{x y}\right) d x+\left(2 y+x e^{x y}\right) d y=0 \\
M=1+y e^{x y}, N=2 y+x e^{x y}
\end{gathered}
$$

$$
\frac{\partial}{\partial y} M=e^{x y}+x y e^{x y}=\frac{\partial}{\partial x} N=e^{x y}+x y e^{x y}, \rightarrow \text { Exact Eq }
$$

Thus

$$
\begin{gathered}
\frac{\partial F}{\partial x}=1+y e^{x y} \rightarrow F=x+e^{x y}+g(y) \rightarrow \frac{\partial F}{\partial y}=x e^{x y}+g^{\prime}(y) \\
\frac{\partial F}{\partial y}=2 y+x e^{x y} \\
g^{\prime}(y)=2 y \rightarrow g(y)=y^{2}+D
\end{gathered}
$$

Therefore,

$$
F(x, y)=x+e^{x y}+y^{2}+D
$$

and the solution of the differential equation is

$$
x+e^{x y}+y^{2}+D=C \rightarrow x+e^{x y}+y^{2}=C
$$

7. Verify that the given differential equation is exact; then solve it

$$
\begin{gathered}
(\cos x+\ln y) d x+\left(\frac{x}{y}+e^{y}\right) d y=0 \\
M=\cos x+\ln y, N=\frac{x}{y}+e^{y} \\
\frac{\partial}{\partial y} M=\frac{1}{y}=\frac{\partial}{\partial x} N=\frac{1}{y}, \rightarrow \text { Exact Eq }
\end{gathered}
$$

Thus

$$
\begin{gathered}
\frac{\partial F}{\partial x}=\cos x+\ln y \rightarrow F=\sin x+x \ln y+g(y) \rightarrow \frac{\partial F}{\partial y}=\frac{x}{y}+g^{\prime}(y) \\
\frac{\partial F}{\partial y}=\frac{x}{y}+e^{y} \\
g^{\prime}(y)=e^{y} \rightarrow g(y)=e^{y}+D
\end{gathered}
$$

Therefore,

$$
F(x, y)=\sin x+x \ln y+e^{y}+D
$$

and the solution of the differential equation is

$$
\sin x+x \ln y+e^{y}+D=C \rightarrow \sin x+x \ln y+e^{y}=C
$$

8. Show that the substitution $v=\ln y$ transforms

$$
\frac{d y}{d x}+P(x) y=Q(x)(y \ln y)
$$

into the linear differential equation

$$
\frac{d v}{d x}+P(x)=Q(x) v(x)
$$

Proof: Let

$$
v=\ln y \rightarrow \frac{d v}{d x}=\frac{1}{y} \frac{d y}{d x} \rightarrow \frac{d y}{d x}=y \frac{d v}{d x}
$$

Then, the differential equation

$$
\frac{d y}{d x}+P(x) y=Q(x)(y \ln y)
$$

becomes

$$
y \frac{d v}{d x}+P(x) y=Q(x)(y v(x))
$$

Dividing both sides by y yields

$$
\frac{d v}{d x}+P(x)=Q(x) v(x)
$$

