Introduction to Quantum I, Spring 2018 (PHYS 4350 / 5350)

Instructor: Jos W.Zwanikken (Olney 136b) http://faculty.uml.edu/Johannes_Zwanikken/

Course book

"Introduction to Quantum Mechanics" by D. J. Griffiths, 2nd edition, Cambridge University Press. Other editions might work as well, but the numbers of the problems may be different.

Classes Tuesday and Thursday, 8:00 – 9:15h See <u>schedule</u>

Points

Attendance	50	
Homework	100	
Exam 1	100	
Exam 2	100	
Final Exam	200	
Total	550	

Attendance

There will be informal quizzes and discussions, and complementary information that is omitted by the book. Important homework problems will be discussed. Questions during class are most welcome.

Homework

Mastering these topics requires practice. Relatively simple exercises are selected to develop the necessary skills, and to internalize the knowledge. Some challenging problems are also selected. Solutions to the problems can be found online (there are several websites), and can be used freely as long as it stimulates the learning process. Frequent repetition, under relaxed circumstances, is strongly encouraged (as if one were studying a musical instrument) and good exercise will lead to gradual improvement. Many of the mathematical techniques are very fundamental and equally useful for other advanced courses.

Reading

The schedule suggests chapters from Griffith's book. It may be difficult to understand every detail during a first reading, but that may improve after some exercise and a second reading. It is helpful to make a summary of each section in the form of a short paragraph, and perhaps the one or two most important equations.

Some books, although beautifully composed, become readable after many years of practice. Griffith's book, however, is written in a casual, almost careless style, and is remarkably transparent and easy to read (in comparison to many other books).

Content

The course will start with a discussion of the principles of quantum mechanics. Subsequently, we will introduce a few fundamental quantum systems, learn how to solve the Schrödinger equation for these systems, and interpret the meaning.

In the second part of the course we will rephrase the principles of quantum mechanics in a clean, consistent formalism.

We will then use the principles of quantum mechanics to:

- predict the emission spectrum of hydrogen
- calculate electron orbitals
- understand the internal structure of atoms
- understand the properties of metals, insulators and semi-conductors

The mathematical framework of quantum mechanics relies heavily on concepts in linear algebra, so there will be exercises to improve proficiency in linear algebra. Differential calculus will also be used.

Schedule

	TUESDAY	THURSDAY		
JAN	23 A Really Short Introduction to Quantum	25 Evolution of probability:		
JAIN	Mechanics	The Schrödinger equation		
	Quanta, uncertainty, particle waves			
	Reading: Sections 1.1 and 1.2	Reading: Sections 1.1 - 1.4		
	Summarize sections 1.1 and 1.2	Problems: 1.1 1.3 1.4 1.5		
	30	01		
JAN/	Momentum and position:	Separation of variables:		
FEB	Heisenberg's uncertainty principle	The time-independent Schrödinger equation		
	Reading: Sections 1.5 and 1.6	Reading: Section 2.1		
	Summarize sections 1.5 and 1.6	Problems: 1.7 1.9 1.17 1.18 2.1 2.2		
FEB	06	08		
	The infinite square well I	The infinite square well II		
	Reading: Section 2.2	Reading: Section 2.2		
	Summarize Section 2.1	Problems: 2.4 2.6 2.7 2.8		
	13	15		
FEB	The harmonic oscillator I	The harmonic oscillator II		
	Reading: Section 2.3.1	Reading: Section 2.3		
	Summarize section 2.3.1	Problems: 2.11 2.12 2.17		
	20 Monday schedule	22		
FEB		Free particles, barriers, and tunneling I		
		Reading: Section 2.4 and 2.5		
		Summarize sections 2.4 and 2.5		
	27	01 Exam I		
FEB/	Free particles, barriers, and tunneling II			
MAR				
	Reading: Sections 2.4 – 2.6			
	Problems: 2.21 2.22 2.23 2.27 +			
	understand what figure 2.19 means			

MAR	06	08 mid semester	
WIAK	The formalism:		
		Observables	
	Linear algebra, Hilbert Space		
	Deading Section 2.1	Deading Sections 2.1 and 2.2	
	Reading: Section 3.1	Reading: Sections 3.1 and 3.2	
	Summarize section 3.1	Problems: 3.1 3.3 3.5 3.6	
NAD	13 Spring break	15 Spring break	
MAR			
	20	22	
MAD		22 Statistical internet diamateria	
MAR	Eigenvalues and eigenfunctions	Statistical interpretation, the uncertainty	
		principle	
	Deading Continue 2.2	Destine Certine 2.2.25	
	Reading: Section 3.3	Reading: Sections 3.3 - 3.5	
	Summarize section 3.3	Problems: 3.7 3.8 3.9 3.13 3.17	
МАВ	27 Dirac notation	29 Overture machanics in 2 dimensions	
MAR	Dirac ilotation	Quantum mechanics in 3 dimensions	
	Deading Section 26	Deading Section 4.1 (do not become	
	Reading: Section 3.6 Summarize section 3.6	Reading: Section 4.1 (do not become	
	Summarize section 3.6	confused by all the functions)	
	02	Problems: 4.1 4.2 4.8	
	03 The background to the L	05 The background to H	
APR	The hydrogen atom I	The hydrogen atom II	
	Reading: Section 4.2.1	Reading: Section 4.2	
	Summarize section 4.2.1 (in words) plus	Problems: 4.10 4.13 4.16	
	equations 4.70 and 4.72		
	10 Exam II	12	
APR		Angular momentum	
AIN		Angulai momentum	
		Reading: Section 4.3	
		Problems: 4.18 4.19 4.24	
	17	19	
APR	Spin	Stern-Gerlach	
	Shu	Steffi Gerlaen	
	Reading: Section 4.4	Reading: Section 4.4	
	Summarize section 4.4.1	Problems: 4.26 4.28 4.32 4.34 4.35	
	24	26	
APR	Many-particle systems:	Atoms	
	Bosons and fermions		
	Reading: Section 5.1	Reading: Sections 5.1 and 5.2	
	Summarize section 5.1	Problems: 5.9 5.12 5.14	
	Summarize Section J.1	1100101115. J.7 J.12 J.14	

MAY	01 Solids	03
	Reading: Section 5.3 Summarize section 5.3	
MAY	08 Final exam week	10 Final exam week

Part I	Introduction: The Schrödinger equation and fundamental quantum systems
Part II	The formalism
Part III	Quantum mechanics of atoms and solids
Exam I	Part I
Exam II	Part II + the hydrogen atom
Final exam	All material covered in the course

Exams

There will be two exams during the class hours:

Exam 1:	The Schrödinger equation and fundamental quantum systems	Thu Mar 1 st
Exam 2:	The formalism	Tue Apr 10 th

Each of these exams will count for 100 points.

The final exam will be about everything discussed during the semester, and will count for 200 points.

Questions

Questions are always welcome at Olney 136b, and all questions are equally welcome. The office hours are shown on the <u>web</u>. Working together, if desired, is encouraged.

If too obvious, the following can be skipped:

Academic Integrity

You are responsible for proper academic conduct. The basic rule-of-thumb is simple: you should not try to receive credit for work you have not performed.

Please refer to the university's academic integrity policy at the following URL:

http://www.uml.edu/Catalog/Undergraduate/Policies/Academic-Integrity.aspx

The introduction to the academic integrity policy is reproduced below:

"The university has a responsibility to promote academic honesty and integrity and to develop procedures to deal effectively with instances of academic dishonesty. Students are responsible for the honest completion and representation of their work, for the appropriate citation of sources, and for respect of others' academic endeavors. Academic dishonesty is prohibited in all programs of the university."

Academic Misconduct Subject to Disciplinary Action

(1) Academic misconduct is an act in which a student:

- (a) Seeks to claim credit for the work or efforts of another without authorization or citation;
- (b) Uses unauthorized materials or fabricated data in any academic exercise;
- (c) Forges or falsifies academic documents or records;
- (d) Intentionally impedes or damages the academic work of others;
- (e) Engages in conduct aimed at making false representation of a student's academic performance; or
- (f) Assists other students in any of these acts.

(2) Examples of academic misconduct include, but are not limited to: cheating on an examination; collaborating with others in work to be presented, contrary to the stated rules of the course; submitting a paper or assignment as one's own work when a part or all of the paper or assignment is the work of another; submitting a paper or assignment that contains ideas or research of others without appropriately identifying the sources of those ideas; getting unauthorized access to examinations or course materials; submitting, without the permission of the current instructor, work previously presented in another course; tampering with the laboratory experiment or computer program of another student; knowingly and intentionally assisting another student in any of the above, including assistance in an arrangement whereby any work, classroom performance, examination or other activity is submitted or performed by a person other than the student under whose name the work is submitted or performed."

Jos Zwanikken

Office: Olney Science Center 136b

Johannes Zwanikken@uml.edu

http://faculty.uml.edu/Johannes_Zwanikken/