Section 6.3

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

If f is a smooth function on $[a, b]$, then the arc length of $y=f(x)$ from $x=a$ to $x=b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Similarly, if $x=g(y)$ is a smooth function on $[c, d]$, then the arc length of $x=g(y)$ from $y=c$ to $y=d$ is

$$
L=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

1. Set up the integral for the length of the given curves:
a) $f(x)=x^{2}, 2 \leq x \leq 5$
b) $g(y)=y^{2}, 2 \leq y \leq 5$
c) $x^{2}+y^{3}=1$ from $(1,0)$ to $(5,-2 \sqrt[3]{3})$
