Section 6.2

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

1. The Shell Method about the y-axis: $V=\int_{a}^{b} 2 \pi \cdot r(x) \cdot h(x) d x$

Find the volume of the solid generated by rotating the region bound by the curves $y=f(x)$ and $y=g(x)$ over the interval $[a, b]$ about:
a) the y-axis.
b) the line $x=M$, where $M \geq b$.
c) the line $x=N$, where $N \leq a$.
2. The Shell Method about the x-axis: $V=\int_{c}^{d} 2 \pi \cdot r(y) \cdot h(y) d y$

Find the volume of the solid generated by rotating the region bound by the curves $x=u(y)$ and $x=v(y)$ over the interval $[c, d]$ about:
a) the x-axis.
b) the line $y=L$, where $L \geq d$.
c) the line $y=K$, where $K \leq c$.

NOTE: For the shell method, your "cuts" (the line drawn through the region at either a random value of x or at a random value of y) are parallel to the line about which you are rotating.

- You integrate with respect to x if your cuts are perpendicular to the x-axis (that is, if your cuts are vertical).
- You integrate with respect to y if your cuts are perpendicular to the y-axis (that is, if your cuts are horizontal).

