Section 6.1

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

1. Consider the region that is bounded by the graphs of $y=1+\sqrt{x}, x=4$, and $y=1$. If we revolve the region about the x-axis, it forms a solid of revolution whose cross sections are washers.

a) What is the outer radius, $R(x)$, of a cross section of the solid at a point x in $[0,4]$?
b) What is the inner radius, $r(x)$, of a cross section of the solid at a point x in $[0,4]$?
c) What is area, $A(x)$, of a cross section of the solid at a point x in $[0,4]$?
d) Write an integral for the volume of the solid.
2. The Disk/Washer Method about a horizontal line: $V=\int_{a}^{b} \pi\left((R(x))^{2}-(r(x))^{2}\right) d x$

Set up the integral to find the volume of the solid generated by rotating the region bound by the curve $y=f(x)$ and the x-axis over the interval $[a, b]$ about:
a) the x-axis.
b) the line $y=L$.
c) the line $y=K$.
3. The Disk/Washer Method about a vertical line: $V=\int_{c}^{d} \pi\left((R(y))^{2}-(r(y))^{2}\right) d y$

Find the volume of the solid generated by rotating the region bound by the curve $x=u(y)$ and the y-axis over the interval $[c, d]$ about:
a) the y-axis.
b) the line $x=M$.
c) the line $x=N$.
4. The Washer Method about a horizontal line: $V=\int_{a}^{b} \pi\left((R(x))^{2}-(r(x))^{2}\right) d x$

Find the volume of the solid generated by rotating the region bound by the curves $y=f(x)$ and $y=g(x)$ over the interval $[a, b]$ about:
a) the x-axis.
b) the line $y=L$.
c) the line $y=K$.
5. The Washer Method about a vertical line: $V=\int_{c}^{d} \pi\left((R(y))^{2}-(r(y))^{2}\right) d y$

Find the volume of the solid generated by rotating the region bound by the curves $x=u(y)$ and $x=v(y)$ over the interval $[c, d]$ about:
a) the y-axis.
b) the line $x=M$.
c) the line $x=N$.

NOTE: For the disk/washer method, your "cuts" (the line drawn through the region at either a random value of x or at a random value of y) are perpendicular to the line about which you are rotating.

You integrate with respect to x if your cuts are perpendicular to the x-axis (that is, if your cuts are vertical).

You integrate with respect to y if your cuts are perpendicular to the y-axis (that is, if your cuts are horizontal).

