Section 5.4

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

1. The Fundamental Theorem of Calculus states:

- If f is continuous on $[a, b]$, then $F(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b) and

$$
F^{\prime}(x)=\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

- If f is continuous on $[a, b]$ and F is any antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

Evaluate:
a. $\frac{d}{d x}\left(\int_{-2}^{x} \sqrt{1+t^{4}} d t\right)$
b. $\int_{1}^{2} \frac{1}{x} d x$
c. $\int_{1}^{2}\left(\frac{d}{d x}\left(\sqrt{1+x^{2}}\right)\right) d x$
2. Area is always a nonnegative quantity. Set up an integral or a sum of integrals to evaluate the area of the region between the curve $y=x^{3}-x^{2}-2 x$ and the x-axis (see the graph below). (Do NOT evaluate the integral.)

