Section 5.2

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

- 1. What is sigma notation?
- 2. Suppose a sum can be written in sigma notation as $\sum_{k=1}^{n} a_k$.
 - a. What is Σ ? What does it stand for?
 - b. What is the index of summation?
 - c. What is the lower limit of summation?
 - d. What is the upper limit of summation?
 - e. What is the *k*-th term of the sum?
 - f. Write the sum without sigma notation.
- 3. The algebra rules for finite sums are:

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$
$$\sum_{k=1}^{n} c a_k = c \cdot \sum_{k=1}^{n} a_k$$
$$\sum_{k=1}^{n} c = n \cdot c$$

Suppose $\sum_{k=1}^{13} a_k = 3$ and $\sum_{k=1}^{13} b_k = 5$. Find the values of:

- a. $\sum_{k=1}^{13} (a_k + b_k)$
- b. $\sum_{k=1}^{13} (a_k b_k)$
- c. $\sum_{k=1}^{13} 7a_k$

d.
$$\sum_{k=1}^{13} 11$$

e. $\sum_{k=1}^{13} (7a_k - b_k + 11)$

4. Which of the following is not true (select one):

a.
$$\sum_{k=1}^{n} (a_k - 1) = \sum_{k=1}^{n} a_k - n$$

b. $\sum_{k=1}^{n} (a_k - 1) = \sum_{k=1}^{n} a_k - 1$

- c. $\sum_{k=1}^{n} (a_k 1) = \sum_{k=1}^{n} a_k \sum_{k=1}^{n} 1$
- 5. A Riemann sum for a bounded function f on a closed interval [a, b] is the sum

 $S_P = \sum_{k=1}^n f(c_k) \cdot \Delta x_k.$

- a. What does *n* represent?
- b. The set *P* is called a **partition** of [a, b]. What is *P*? (Answer: *P* is any set such that $P = \{x_0, x_1, x_2, \dots, x_{n-1}, x_n\}$ where $a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$)
- c. What is the k-th subinterval of [a, b]?
- d. What does Δx_k represent? How can we calculate Δx_k ?
- e. What does c_k represent?
- f. Other than "the value of f(x) at $x = c_k$ ", what does $f(c_k)$ represent?
- 6. If *P* is a partition of [a, b], what is ||P|| (the **norm** of *P*)?
- 7. The Riemann sum for a continuous function *f* on a closed interval [*a*, *b*] approximates (choose one):
 - a. The total area of the region bounded by the curve y = f(x) and the *x*-axis over the interval [*a*, *b*].
 - b. The area above the x-axis of the region bounded by the curve y = f(x) and the x-axis minus the area below the x-axis of the region bounded by the curve y = f(x) and the x-axis over the interval [a, b].
 - c. It is just a random sum that we defined.