Section 5.1

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

1. In general, how will we estimate the area under the graph of a nonnegative continuous function, $y=f(x)$, over a closed interval, $[a, b]$?
2. To estimate the area under the graph of a positive continuous function, $y=f(x)$, over a closed interval, $[a, b]$, we use the formula

$$
A \approx f\left(c_{1}\right) \cdot \Delta x+f\left(c_{2}\right) \cdot \Delta x+f\left(c_{3}\right) \cdot \Delta x+\cdots+f\left(c_{n}\right) \cdot \Delta x
$$

a. What does A represent?
b. What does the symbol \approx mean?
c. What does n represent?
d. What does Δx represent? How can we calculate Δx ?
e. What do we mean when we talk about the k-th subinterval of $[a, b]$?
f. What does c_{k} represent?
g. Other than "the value of $f(x)$ at $x=c_{k}$ ", what does $f\left(c_{k}\right)$ represent?
3. Suppose an object is moving only forwards in a straight line and that its velocity at a time t is given by $v(t)$. To find the total distance traveled over the time interval $[a, b]$ we (select one):
a. Calculate $v^{\prime}(b)-v^{\prime}(a)$.
b. Find the area under the graph of $y=v(t)$ over the interval [a, b].
c. Find the area under the graph of $y=v^{\prime}(t)$ over the interval $[a, b]$.
d. Calculate $v(b)-v(a)$.
4. What is the difference between displacement and total distance traveled?
5. What is the average value of a nonnegative continuous function, $y=f(x)$, over a closed interval, $[a, b]$?
6. You want to use finite approximations to estimate the area under the curve $y=f(x)$ between $x=1$ and $x=2$ using the left endpoint method with 5 rectangles of equal width. What are the values of $c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5} ?
7. You want to use finite approximations to estimate the area under the curve $y=f(x)$ between $x=1$ and $x=2$ using the right endpoint method with 6 rectangles of equal width. What are the values of $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ and c_{6} ?
8. You want to use finite approximations to estimate the area under the curve $y=f(x)$ between $x=1$ and $x=2$ using the midpoint method with 4 rectangles of equal width. What are the values of c_{1}, c_{2}, c_{3} and c_{4} ?

