Instructions: No notes or calculators are allowed. Answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. Work must be neat, organized and easily interpreted. Simplify all answers unless otherwise indicated. Please circle your final answers.

Practice 1

1. (15 pts) For the function $f(x)=3 x^{2}$, find a formula for a Riemann sum obtained by dividing the interval $[0,1]$ into n equal subintervals and using the RIGHT-hand endpoint for each c_{k}. Then take a limit of these sums as $n \rightarrow \infty$ to calculate the area under the curve over $[0,1]$.
2. (5 pts) Express the limit $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} c_{k}^{5} \Delta x_{k}, P$ a partition of [8,11], as a definite integral.
3. Use the Fundamental Theorem of Calculus to:
a. (5 pts) Find $\frac{d y}{d x}$ for $y=\int_{0}^{x} \sqrt{5+6 t^{2}} d t$.
b. (5 pts) Find $\frac{d y}{d x}$ for $y=\int_{0}^{x^{2}} \sqrt{5+6 t^{2}} d t$ [hint: also use the Chain Rule].
4. Integrate the following indefinite integrals.
a. $(8 \mathrm{pts}) \int x^{1 / 3} \sin \left(x^{4 / 3}+8\right) d x$
b. $(7 \mathrm{pts}) \int \frac{t^{3}-t^{5 / 2}}{t^{2}} d t$
c. $(8 \mathrm{pts}) \int 3 y^{5} \sqrt{y^{3}+1} d y$
d. $(7 \mathrm{pts}) \int \tan ^{2} \theta \sec ^{2} \theta d \theta$
5. Determine the values of the following definite integrals.
a. $(10 \mathrm{pts}) \int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x$
b. (10 pts) $\int_{0}^{\pi / 6} \cos ^{-3} 2 t \sin 2 t d t$
c. $\quad(10 \mathrm{pts}) \int_{-1}^{1} \theta^{3}\left(1+\theta^{4}\right)^{3} d \theta$
6. (10 pts) Find the area of the region enclosed by the curves $9 x^{2}+y=9$ and $x^{4}-y=1$.

BONUS PROBLEM (8 pts) Evaluate JUST ONE of the following definite integrals. If you try both, you must neatly cross out the one you do not want graded, otherwise neither problem will receive credit.
A. $\int_{0}^{4 / 3} \frac{3}{16+9 r^{2}} d r$
B. $\int_{e}^{e^{2}} \frac{2}{z \ln (z)} d z$

Practice 2

1. (10 pts) Use the Midpoint Rule to estimate the area under $y=\frac{5}{x}$ over the interval $[1,25]$ using six rectangles of equal width. Do not simplify your answer.
2. (5 pts) Express the limit $\lim _{\|\mathrm{P}\| \rightarrow 0} \sum_{\mathrm{k}=1}^{\mathrm{n}} c_{k}^{9} \Delta x_{k}, P$ a partition of $[3,5]$, as a definite integral.
3. Use the Fundamental Theorem of Calculus to:
a. $\quad(5 \mathrm{pts})$ Find $\frac{d y}{d x}$ for $y=\int_{0}^{x} \sqrt{3+4 t^{2}} d t$.
b. (5 pts) Find $\frac{d y}{d x}$ for $y=\int_{0}^{\tan x} \sqrt{3+4 t^{2}} d t$ [hint: also use the Chain Rule].
4. Integrate the following indefinite integrals.
a. $\quad(10 \mathrm{pts}) \int(2 \theta+1+2 \cos (2 \theta+1)) d \theta$
b. $\quad(10 \mathrm{pts}) \int \frac{(t+1)^{2}-1}{t^{4}} d t$
c. $\quad(10 \mathrm{pts}) \int \frac{(\ln y)^{-3}}{y} d y$
5. Determine the values of the following definite integrals.
a. (15 pts) $\int_{-\pi / 3}^{0} \sec x \tan x d x$
b. $(15 \mathrm{pts}) \int_{0}^{\ln 5} e^{r}\left(3 e^{r}+1\right)^{-3 / 2} d r$
6. (15 pts) Find the total area of the shaded regions.

BONUS PROBLEM (8 pts) Evaluate JUST ONE of the following definite integrals. If you try both, you must neatly cross out the one you do not want graded, otherwise neither problem will receive credit.
A. $\int_{-2}^{2} \frac{3}{4+3 t^{2}} d t$
B. $\int_{\sqrt{3}}^{\sqrt{8}} z^{3} \sqrt{z^{2}+1} d z$

Practice 3

1. (10 pts) Use the Midpoint Rule to estimate the area under $y=\frac{3}{x^{2}}$ over the interval $[2,22]$ using five rectangles of equal width. Do not simplify your answer.
2. (5 pts) Express the limit $\lim _{\|P\| \rightarrow 0} \sum_{\mathrm{k}=1}^{\mathrm{n}} c_{k}^{3} \Delta x_{k}, P$ a partition of $[2,8]$, as a definite integral.
3. Use the Fundamental Theorem of Calculus to:
a. $\quad(5 \mathrm{pts})$ Find $\frac{d y}{d x}$ for $y=\int_{0}^{x} \sqrt{5+17 t^{3}} d t$.
b. (5 pts) Find $\frac{d y}{d x}$ for $y=\int_{0}^{\ln x} \sqrt{5+17 t^{3}} d t$ [hint: also use the Chain Rule].
4. Integrate the following indefinite integrals.
a. $\quad(10 \mathrm{pts}) \int\left(\frac{1}{\sqrt{2 \theta-\pi}}+2 \sec ^{2}(2 \theta-\pi)\right) d \theta$
b. $(10 \mathrm{pts}) \int\left(t-\frac{2}{t}\right)\left(t+\frac{2}{t}\right) d t$
c. $\quad(10 \mathrm{pts}) \int \frac{\cos (\ln y)}{y} d y$
5. Determine the values of the following definite integrals.
a. (15 pts) $\int_{-\pi / 6}^{0} \sec x \tan x d x$
b. $(15 \mathrm{pts}) \int_{0}^{\ln 10} e^{r}\left(e^{r}-1\right)^{1 / 2} d r$
6. (15 pts) Find the total area of the shaded regions.

BONUS PROBLEM (8 pts) Evaluate JUST ONE of the following definite integrals. If you try both, you must neatly cross out the one you do not want graded, otherwise neither problem will receive credit.
A. $\int_{2 / 3}^{2 \sqrt{3} / 3} \frac{3}{4+3 t^{2}} d t$
B. $\int_{-1}^{0} 3 z^{5} \sqrt{z^{3}+1} d z$

