Name		Section	
Student ID Number	Instructor		

Instructions: No note or calculators are allowed. Answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. **Work must be neat, organized and easily interpreted.**

A page of useful information has been included on the last page of the exam.

Please circle your final answers.

Notes:

0! = 1 and if n > 0 then $n! = 1 \times 2 \times 3 \times \cdots \times n$

Page #	Point Value	Grade
2	12	
3	12	
4	6	
5	6	
6	6	
7	6	
8	6	
9	12	
10	12	
11	10	
12	12	
Total	100	

1. Evaluate the integrals:

a.
$$(6 \text{ pts}) \int_0^2 2x(x^2 - 1)^3 dx$$

b. (6 pts) $\int x \ln \sqrt{x} dx$

c.
$$(6 \text{ pts}) \int_0^{\pi/4} \cos^3(2x) \, dx$$

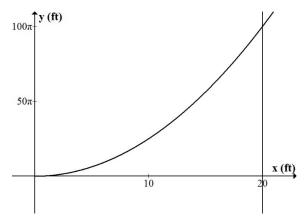
d. $(6 \text{ pts}) \int \tan(x) \sec^3(x) dx$

e.
$$(6 \text{ pts}) \int \frac{1}{x^2 \sqrt{25 - x^2}} dx$$

f. (6 pts) $\int_0^1 \frac{1}{(x-1)^2} dx$ (**Hint**: This is an improper integral.)

g. (6 pts)
$$\int \frac{x^2 - 4}{x^3 + 4x} dx$$

2. (6 pts) A nose cone for a space reentry vehicle has the shape of the solid that is generated by revolving the region bounded by $y = \frac{1}{4}\pi x^2$, y = 0, and x = 20 about the x-axis. Find the volume (in ft³) of the nose cone.



3. (6 pts) Find the arc length of the curve $y = \frac{1}{3}x^{3/2}$ from $\left(5, \frac{25\sqrt{5}}{3}\right)$ to $\left(12, 8\sqrt{3}\right)$.

4. Determine whether the following series **converge** or **diverge**. Justify your answer by referencing AND applying the appropriate convergence test. Show that the requirements of the test being used are satisfied.

a.
$$(6 \text{ pts}) \sum_{k=1}^{\infty} \frac{7^k (k+1)}{(2k)!}$$

b. $(6 \text{ pts}) \sum_{n=2}^{\infty} \frac{n}{(n-1)2^n}$

c.
$$(6 \text{ pts}) \sum_{n=1}^{\infty} \frac{e^n}{e^n + n}$$

d.
$$(6 \text{ pts}) \sum_{k=2}^{\infty} (-1)^k \frac{4}{(\ln k)^2}$$

5. (10 pts) Find the interval of convergence and the radius of convergence for the power series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-3)^n}{n}$$

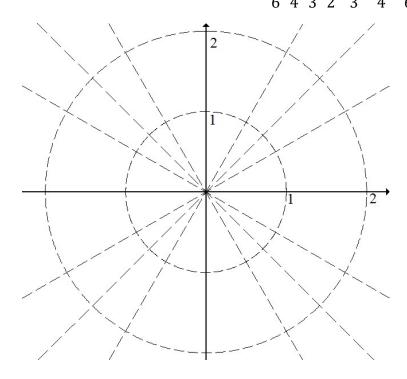
Also, for which values of x does the series converge absolutely? Conditionally?

Interval of Convergence: ______ Radius of Convergence: _____

Absolute Convergence: _____ Conditional Convergence: _____

6. (6 pts) Find the Taylor series generated by $f(x) = x^3$ at a = -2.

7. (6 pts) Sketch the polar curve $r=2\cos 2\theta$, $0 \le \theta \le \pi$. Clearly label the points where $\theta=0,\frac{\pi}{6},\frac{\pi}{4},\frac{\pi}{3},\frac{\pi}{2},\frac{2\pi}{3},\frac{3\pi}{4},\frac{5\pi}{6}$, and π



Disk Method:
$$V = \int_a^b \pi [R(x)]^2 dx$$

Disk Method:
$$V = \int_a^b \pi[R(x)]^2 dx$$
 Washer Method: $V = \int_a^b \pi([R(x)]^2 - [r(x)]^2) dx$

Shell Method:
$$V = \int_a^b 2\pi r(x)h(x) dx$$

Shell Method:
$$V = \int_a^b 2\pi r(x)h(x) dx$$
 Surface Area: $S = \int_a^b 2\pi \cdot f(x)\sqrt{1 + \left(f'(x)\right)^2} dx$

Arc Length Formula:
$$L = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

Useful Trigonometric Identities:
$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
; $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$; $\sin 2\theta = 2 \sin \theta \cos \theta$

The *n*-th Term Test for Divergence: $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n\to\infty} a_n$ fails to exist or is different from zero.

The Limit Comparison Test: Let $\sum a_n$ and $\sum b_n$ be series with positive terms and suppose $L = \lim_{n \to \infty} \frac{a_n}{b_n}$

- a) If L is finite and L > 0, then the series both converge or both diverge.
- b) If L=0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- c) If $L=\infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Ratio Test: Let $\sum a_n$ be a series with nonzero terms and suppose $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$.

- a) If ρ < 1, the series converges absolutely.
- b) If $\rho > 1$ or $\rho = \infty$, the series diverges.
- c) If $\rho = 1$, then the test is inconclusive, use a different test.

Alternating Series Test: An alternating series $\sum_{n=1}^{\infty} (-1)^n u_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ converges if the following three conditions are satisfied:

1)
$$u_n > 0$$
 for all $n \ge N$

$$2) \lim_{n \to \infty} u_n = 0$$

2)
$$\lim_{n \to \infty} u_n = 0$$
 3) $u_n \ge u_{n+1}$ for all $n \ge N$ for some N

The *n*-th Taylor polynomial for f about x=a is $p_n(x)=\sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$

The **Taylor series** for f about x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$

Symmetry Tests for Polar Graphs

- 1. Symmetry about the x-axis: If the point (r,θ) lies on the graph, then $(r,-\theta)$ or $(-r,\pi-\theta)$ also lies on the graph.
- 2. Symmetry about the y-axis: If the point (r, θ) lies on the graph, then $(r, \pi \theta)$ or $(-r, -\theta)$ also lies on the graph.
- 3. Symmetry about the origin: If the point (r, θ) lies on the graph, then $(-r, \theta)$ or $(r, \theta + \pi)$ also lies on the graph.

Slope of a Polar Curve $r = f(\theta)$ in the Cartesian Plane: $\frac{dy}{dx}\Big|_{(r,\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$