MATH.1320	Calculus II Fall 2018	Final Exam
Name	Section	
Student ID Number	Instructor	
Instructions: No note or calcu	lators are allowed. Answers must be suppor	ted by work on your

Instructions: No note or calculators are allowed. Answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. **Work must be neat, organized and easily interpreted.**

A page of useful information has been included on the last page of the exam.

Please circle your final answers.

Notes: 0! = 1 and if n > 0 then $n! = 1 \times 2 \times 3 \times \cdots \times n$

Page #	Point Value	Grade
3	12	
4	6	
5	7	
6	7	
7	12	
8	6	
9	16	
10	10	
11	14	
12	10	
Total	100	

1. Evaluate the integrals:

a. (6 pts)
$$\int_{1}^{4} \frac{1}{\sqrt{x} (1+\sqrt{x})^{2}} dx$$

b. (6 pts) $\int x^2 \sin(x) \, dx$

c. (6 pts) $\int_{-2}^{6} \sin^3(\pi x) \cos^2(\pi x) dx$

d. (7 pts)
$$\int_{2}^{4} \frac{\sqrt{x^{2}-4}}{x} dx$$
 (Hint: use trigonometric substitution)

e. (7 pts)
$$\int \frac{3-x}{(3x+1)(x-1)} dx$$

f. (6 pts) $\int_0^\infty e^{-2x} \, dx$

2. (6 pts) Set up an integral that finds the volume of the solid generated by revolving the region in the first quadrant bound by $y = 5x^2 - 10x + 6$ and y = -5x + 16 about the y-axis. **Do not solve the integral.**

3. (6 pts) Find the area of the surface formed by revolving the graph of $f(x) = x^3$ on the interval [0,1] about the *x*-axis.

4. Determine whether the following series **converge** or **diverge**. Justify your answer by <u>referencing</u> AND <u>applying</u> the appropriate convergence test. Show that the requirements of the test being used are satisfied.

a. (8 pts)
$$\sum_{k=1}^{\infty} \frac{n+1}{\sqrt{n^3+2}}$$

b. (8 pts)
$$\sum_{n=1}^{\infty} \frac{7^n}{n!}$$

5. (10 pts) Find the interval of convergence and the radius of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(3x+1)^{n+1}}{2n+2}$$

Interval of Convergence: _____ Radius of Convergence: _____

6. (6 pts) Does the following series converge or diverge? If it converges, find its sum.

$$\sum_{n=1}^{\infty} \frac{2^n}{3^{n-1}}$$

7. (8 pts) Find the first four nonzero terms of the Taylor series generated by $f(x) = \frac{1}{1-x}$ at a = 2.

- 8. (6 pts) Find the Cartesian coordinates of the following points given in polar coordinates and sketch them on the given coordinate system. Label the points in polar coordinates.
 - a. $(r, \theta) = (-3, \pi)$

b.
$$(r,\theta) = \left(5,\frac{4\pi}{3}\right)$$

9. (4 pts) Find the polar coordinates, $0 \le \theta < 2\pi$ and $r \ge 0$, of the following points given in Cartesian coordinates.

a.
$$(x, y) = (\sqrt{2}, \sqrt{2})$$

b.
$$(x, y) = (-4\sqrt{3}, 4)$$

Disk Method: $V = \int_{a}^{b} \pi[R(x)]^{2} dx$ Shell Method: $V = \int_{a}^{b} 2\pi r(x)h(x) dx$ Arc Length Formula: $L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$ Useful Trigonometric Identities: $\cos^{2} \theta = \frac{1 + \cos 2\theta}{2}$; $\sin^{2} \theta = \frac{1 - \cos 2\theta}{2}$; $\sin 2\theta = 2 \sin \theta \cos \theta$

The *n***-th Term Test for Divergence**: $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n \to \infty} a_n$ fails to exist or is different from zero.

The Limit Comparison Test: Let $\sum a_n$ and $\sum b_n$ be series with positive terms and suppose

- $L = \lim_{n \to \infty} \frac{a_n}{b_n}.$
 - a) If L is finite and L > 0, then the series both converge or both diverge.
 - b) If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges.
 - c) If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Ratio Test: Let $\sum a_n$ be a series with nonzero terms and suppose $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$.

- a) If $\rho < 1$, the series converges absolutely.
- b) If $\rho > 1$ or $\rho = \infty$, the series diverges.
- c) If $\rho = 1$, then the test is inconclusive, use a different test.

Alternating Series Test: An alternating series $\sum_{n=1}^{\infty} (-1)^n u_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ converges if the following three conditions are satisfied:

1) $u_n > 0$ for all $n \ge N$ 2) $\lim_{n \to \infty} u_n = 0$ 3) $u_n \ge u_{n+1}$ for all $n \ge N$ for some N

The *n*-th Taylor polynomial for *f* about x = a is $p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$

The **Taylor series** for *f* about x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$

Symmetry Tests for Polar Graphs

- 1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, then $(r, -\theta)$ or $(-r, \pi \theta)$ also lies on the graph.
- 2. Symmetry about the y-axis: If the point (r, θ) lies on the graph, then $(r, \pi \theta)$ or $(-r, -\theta)$ also lies on the graph.
- 3. Symmetry about the origin: If the point (r, θ) lies on the graph, then $(-r, \theta)$ or $(r, \theta + \pi)$ also lies on the graph.

Slope of a Polar Curve $r = f(\theta)$ in the Cartesian Plane: $\frac{dy}{dx}\Big|_{(r,\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$