Name \qquad Section \qquad
Student ID Number \qquad Instructor \qquad
Instructions: No note or calculators are allowed. Answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. Work must be neat, organized and easily interpreted.

A page of useful information has been included on the last page of the exam.

Please circle your final answers.

Notes:
$0!=1$ and if $n>0$ then $n!=1 \times 2 \times 3 \times \cdots \times n$

Page \#	Point Value	Grade
3	12	
4	6	
5	7	
6	7	
7	12	
8	6	
9	16	
10	10	
11	14	
12	10	
Total	100	

1. Evaluate the integrals:
a. $(6 \mathrm{pts}) \int_{1}^{4} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} d x$
b. (6 pts) $\int x^{2} \sin (x) d x$
c. $(6$ pts $) \int_{-2}^{6} \sin ^{3}(\pi x) \cos ^{2}(\pi x) d x$
d. (7 pts) $\int_{2}^{4} \frac{\sqrt{x^{2}-4}}{x} d x$ (Hint: use trigonometric substitution)
e. (7 pts) $\int \frac{3-x}{(3 x+1)(x-1)} d x$
f. $(6 \mathrm{pts}) \int_{0}^{\infty} e^{-2 x} d x$
2. (6 pts) Set up an integral that finds the volume of the solid generated by revolving the region in the first quadrant bound by $y=5 x^{2}-10 x+6$ and $y=-5 x+16$ about the y-axis. Do not solve the integral.

3. (6 pts) Find the area of the surface formed by revolving the graph of $f(x)=x^{3}$ on the interval $[0,1]$ about the x-axis.
4. Determine whether the following series converge or diverge. Justify your answer by referencing AND applying the appropriate convergence test. Show that the requirements of the test being used are satisfied.
a. $\quad(8 \mathrm{pts}) \sum_{k=1}^{\infty} \frac{n+1}{\sqrt{n^{3}+2}}$
b. $(8 \mathrm{pts}) \sum_{n=1}^{\infty} \frac{7^{n}}{n!}$
5. (10 pts) Find the interval of convergence and the radius of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{(3 x+1)^{n+1}}{2 n+2}
$$

Interval of Convergence: \qquad Radius of Convergence: \qquad
6. (6 pts) Does the following series converge or diverge? If it converges, find its sum.

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n-1}}
$$

7. (8 pts) Find the first four nonzero terms of the Taylor series generated by $f(x)=\frac{1}{1-x}$ at $a=2$.
8. (6 pts) Find the Cartesian coordinates of the following points given in polar coordinates and sketch them on the given coordinate system. Label the points in polar coordinates.
a. $(r, \theta)=(-3, \pi)$
b. $(r, \theta)=\left(5, \frac{4 \pi}{3}\right)$

9. (4 pts) Find the polar coordinates, $0 \leq \theta<2 \pi$ and $r \geq 0$, of the following points given in Cartesian coordinates.
a. $(x, y)=(\sqrt{2}, \sqrt{2})$
b. $(x, y)=(-4 \sqrt{3}, 4)$

Disk Method: $V=\int_{a}^{b} \pi[R(x)]^{2} d x$
Shell Method: $V=\int_{a}^{b} 2 \pi r(x) h(x) d x$

Washer Method: $V=\int_{a}^{b} \pi\left([R(x)]^{2}-[r(x)]^{2}\right) d x$
Surface Area: $S=\int_{a}^{b} 2 \pi \cdot f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

Arc Length Formula: $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
Useful Trigonometric Identities: $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} ; \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2} ; \sin 2 \theta=2 \sin \theta \cos \theta$
The \boldsymbol{n}-th Term Test for Divergence: $\sum_{n=1}^{\infty} a_{n}$ diverges if $\lim _{n \rightarrow \infty} a_{n}$ fails to exist or is different from zero.
The Limit Comparison Test: Let $\sum a_{n}$ and $\sum b_{n}$ be series with positive terms and suppose $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.
a) If L is finite and $L>0$, then the series both converge or both diverge.
b) If $L=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
c) If $L=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Ratio Test: Let $\sum a_{n}$ be a series with nonzero terms and suppose $\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$.
a) If $\rho<1$, the series converges absolutely.
b) If $\rho>1$ or $\rho=\infty$, the series diverges.
c) If $\rho=1$, then the test is inconclusive, use a different test.

Alternating Series Test: An alternating series $\sum_{n=1}^{\infty}(-1)^{n} u_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}$ converges if the following three conditions are satisfied:

1) $u_{n}>0$ for all $n \geq N$
2) $\lim _{n \rightarrow \infty} u_{n}=0$
3) $u_{n} \geq u_{n+1}$ for all $n \geq N$ for some N

The \boldsymbol{n}-th Taylor polynomial for f about $x=a$ is $p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
The Taylor series for f about $x=a$ is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
Symmetry Tests for Polar Graphs

1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, then $(r,-\theta)$ or $(-r, \pi-\theta)$ also lies on the graph.
2. Symmetry about the y-axis: If the point (r, θ) lies on the graph, then $(r, \pi-\theta)$ or $(-r,-\theta)$ also lies on the graph.
3. Symmetry about the origin: If the point (r, θ) lies on the graph, then $(-r, \theta)$ or $(r, \theta+\pi)$ also lies on the graph.
Slope of a Polar Curve $\boldsymbol{r}=\boldsymbol{f}(\boldsymbol{\theta})$ in the Cartesian Plane: $\left.\frac{d y}{d x}\right|_{(r, \theta)}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}$
