The Definite Integral

Part 1

Riemann Sums

Let $f(x)$ be any function defined on a closed interval $[a, b]$ and
$P=\left\{x_{0}, x_{1}, x_{2}, x_{3}, \cdots, x_{n-1}, x_{n}\right\}$ be a partition of the interval. Then the Riemann sum is

$$
\begin{aligned}
S_{P}= & f\left(c_{1}\right) \Delta x_{1}+f\left(c_{2}\right) \Delta x_{2}+f\left(c_{3}\right) \Delta x_{3}+\cdots+f\left(c_{n}\right) \Delta x_{n} \\
& =\sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x_{k}
\end{aligned}
$$

If we increase n in such a way that $\|P\| \rightarrow 0$, then the width of every rectangle tends to zero.

Riemann Sums

Area Under a Curve

If the function $f(x)$ is continuous and nonnegative on $[a, b]$, then the area under the curve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ over the interval $[\boldsymbol{a}, \boldsymbol{b}]$ is

$$
A=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x_{k}
$$

where $c_{1}, c_{2}, c_{3}, \cdots, c_{n}$ are arbitrary points in successive subintervals.

Definite Integral

If the function $f(x)$ is defined on $[a, b]$, then the definite integral of \boldsymbol{f} from \boldsymbol{a} to \boldsymbol{b} is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x_{k}
$$

provided the limit exists.

$$
\int_{a}^{b} f(x) d x
$$

- \int is the integral sign
- $d x$ is the variable of integration
- a is the lower limit of integration
- b is the upper limit of integration
- $f(x)$ is the integrand

Example 1

Express

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} 4 c_{k}\left(1-3 c_{k}\right) \Delta x_{k}
$$

where P is a partition of $[-3,3]$ as a definite integral.

Example 1 (continued)

Solution:

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x_{k}
$$

We have

$$
f\left(c_{k}\right)=4 c_{k}\left(1-3 c_{k}\right) \text { and }[a, b]=[-3,3]
$$

Therefore

$$
f(x)=4 x(1-3 x)
$$

Answer:

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} 4 c_{k}\left(1-3 c_{k}\right) \Delta x_{k}=\int_{-3}^{3} 4 x(1-3 x) d x
$$

Areas Under a Curve, Riemann Sums, and Definite Integrals

If the function $f(x)$ is continuous and nonnegative on $[a, b]$, then

$$
A=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x_{k}=\int_{a}^{b} f(x) d x
$$

Example 2

Graph the integrand and use areas to evaluate

$$
\int_{-5}^{5} \sqrt{25-x^{2}} d x
$$

Solution:

In general, $y=\sqrt{r^{2}-x^{2}}$ is the upper semicircle of radius r centered at the origin.

Example 2 (continued)

$$
r=5
$$

Since the area of a circle of radius r is πr^{2}, the area of a semi-circle is $\frac{1}{2} \pi r^{2}$.

Answer:

$$
\begin{gathered}
\int_{-5}^{5} \sqrt{25-x^{2}} d x=\frac{1}{2} \pi(5)^{2} \\
=\frac{25 \pi}{2}
\end{gathered}
$$

