Name	Section	
-		
Student ID Number	Instructor	

Instructions: No note or calculators are allowed. Answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. **Work must be neat, organized and easily interpreted.**

A page of useful information has been included on the last page of the exam.

Please circle your final answers.

Notes:

0! = 1 and if n > 0 then $n! = 1 \times 2 \times 3 \times \cdots \times n$

Page #	Point Value	Grade
2	12	
3	12	
4	12	
5	12	
6	10	
7	10	
8	10	
9	12	
10	10	
Total	100	

1. Evaluate the integrals:

a. (6 pts)
$$\int_0^1 \frac{9x^2 dx}{\sqrt{1-x^3}}$$

b. $(6 \text{ pts}) \int \sin^{2017}(2x) \cos^3(2x) dx$

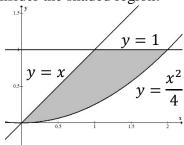
c.
$$(6 \text{ pts}) \int x^3 \ln(x) dx$$

d. (6 pts)
$$\int \frac{1}{\sqrt{9+x^2}} dx$$

e.
$$(6 \text{ pts}) \int \frac{x+4}{x^2+5x-6} dx$$

f. (6 pts)
$$\int_{1}^{\infty} \frac{1}{1+x^2} dx$$

2. Consider the shaded region:



Set up, but do NOT evaluate, the integral or sum of integrals needed to find:

a. (6 pts) the <u>volume</u> of the solid generated by revolving the shaded region about the <u>x-axis</u>.

b. (6 pts) the <u>perimeter</u> of the shaded region. (Hint: Determine the length of y = x from (0,0) to (1,1); determine the length of y = 1 from (1,1) to (2,1); and find the integral that determines the length of $y = \frac{x^2}{4}$ from (0,0) to (2,1). Then add these three lengths together). 3. Determine whether the following series **converge** or **diverge**. Justify your answer by referencing AND applying the appropriate convergence test. Show that the requirements of the test being used are satisfied.

a. (5 pts)
$$\sum_{k=0}^{\infty} \frac{e^k}{e^k + k}$$

b. (5 pts) $\sum_{n=2}^{\infty} \frac{\sqrt{n}(n+1)}{(n^2+1)(n-1)}$

c.
$$(5 \text{ pts}) \sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$

d. (5 pts)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{1+\sqrt{k}}$$

4. (10 pts) Find the center, the radius of convergence and the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(3x+1)^{n+1}}{2n+2}$$

Center:	Radius of convergence:
Interval of convergence:	

5. (6 pts) Find the Taylor series generated by $f(x) = x^4 + x^2 + 1$ at x = -2.

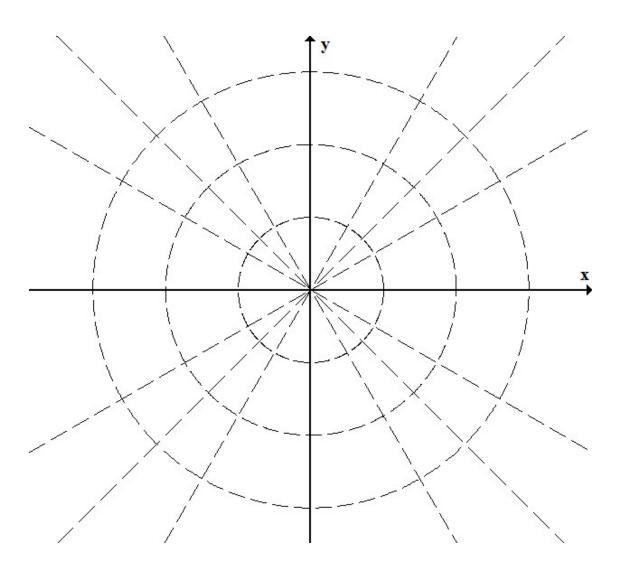
6. (6 pts) The Maclaurin series for
$$\ln(1+x)$$
 is
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}, \quad -1 < x \le 1$$
Find the Maclaurin series for $a(x) = \ln(1+9x^2)$.

Find the Maclaurin series for $g(x) = \ln(1 + 9x^2)$.

7. (10 pts) The polar curve

$$r = 2 - \cos(2\theta)$$

is symmetric about the x-axis. Plot this polar curve on the grid provided.



THIS PAGE IS INTENTIONALLY BLANK

Disk Method:
$$V = \int_a^b \pi [R(x)]^2 dx$$

Disk Method:
$$V = \int_a^b \pi[R(x)]^2 dx$$
 Washer Method: $V = \int_a^b \pi([R(x)]^2 - [r(x)]^2) dx$

Shell Method:
$$V = \int_a^b 2\pi r(x)h(x) dx$$

Shell Method:
$$V = \int_a^b 2\pi r(x)h(x) dx$$
 Surface Area: $S = \int_a^b 2\pi \cdot f(x)\sqrt{1 + \left(f'(x)\right)^2} dx$

Arc Length Formula:
$$L = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

Useful Trigonometric Identities:
$$\cos^2 \theta = \frac{1+\cos 2\theta}{2}$$
; $\sin^2 \theta = \frac{1-\cos 2\theta}{2}$; $\sin 2\theta = 2\sin \theta \cos \theta$

The n-th Term Test for Divergence: $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n\to\infty} a_n$ fails to exist or is different from zero.

The Limit Comparison Test: Let $\sum a_n$ and $\sum b_n$ be series with positive terms and suppose $L = \lim_{n \to \infty} \frac{a_n}{b_n}.$

- a) If L is finite and L>0, then the series both converge or both diverge.
- b) If L=0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- c) If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Ratio Test: Let $\sum a_n$ be a series with nonzero terms and suppose $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$.

- a) If ρ < 1, the series converges absolutely.
- b) If $\rho > 1$ or $\rho = \infty$, the series diverges.
- c) If $\rho = 1$, then the test is inconclusive, use a different test.

Alternating Series Test: An alternating series $\sum_{n=1}^{\infty} (-1)^n u_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ converges if the following three conditions are satisfied:

1)
$$u_n > 0$$
 for all $n \ge N$

$$2) \lim_{n \to \infty} u_n = 0$$

2)
$$\lim_{n\to\infty} u_n = 0$$
 3) $u_n \ge u_{n+1}$ for all $n \ge N$ for some N

The n-th Taylor polynomial for f about x=a is $p_n(x)=\sum_{k=0}^n \frac{f^{(k)}(a)}{b!}(x-a)^k$

The **Taylor series** for
$$f$$
 about $x=a$ is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$

Symmetry Tests for Polar Graphs

- 1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, then $(r, -\theta)$ or $(-r, \pi \theta)$ also lies on the graph.
- 2. Symmetry about the y-axis: If the point (r,θ) lies on the graph, then $(r,\pi-\theta)$ or $(-r,-\theta)$ also lies on the graph.
- 3. Symmetry about the origin: If the point (r, θ) lies on the graph, then $(-r, \theta)$ or $(r, \theta + \pi)$ also lies on the graph.

Area Enclosed by a Polar Curve: $A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$

Arc Length of a Polar Curve:
$$L=\int_{lpha}^{eta}\sqrt{r^2+\left(rac{dr}{d heta}
ight)^2}\,d heta$$