Name		Section	
Student ID Number	Instructor		

Instructions: No note or calculators are allowed. Answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. **Work must be neat, organized and easily interpreted.**

A page of useful information has been included on the last page of the exam.

Please circle your final answers.

Notes:

0! = 1 and if n > 0 then $n! = 1 \times 2 \times 3 \times \cdots \times n$

Page #	Point Value	Grade
3	12	
4	12	
5	10	
6	12	
7	12	
8	12	
9	6	
10	8	
11	11	
12	5	
Total	100	

THIS PAGE IS INTENTIONALLY BLANK

1. Evaluate the integrals:

a.
$$(6 \text{ pts}) \int_0^1 x \sqrt{3x^2 + 1} \ dx$$

b. $(6 \text{ pts}) \int \cos^3(x) dx$

c.
$$(6 \text{ pts}) \int x \cos(7x) dx$$

d.
$$(6 \text{ pts}) \int \frac{30}{x^2 - 25x + 100} dx$$

2. (5 pts) Suppose that you use the substitution $x = 5 \tan \theta$ on an integral $I = \int f(x) dx$ and the integral in terms of θ is equal to

$$I = \sin \theta + \sec \theta + C$$

Find an expression for I in terms of x that does not include any inverse trigonometric functions.

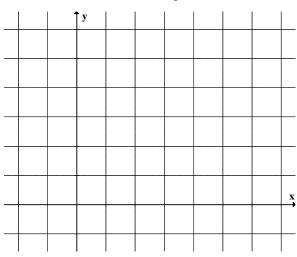
3. (5 pts) Write the following improper integral in terms of the limit of a proper integral. Then determine whether the integral converges or diverges. If the integral converges, evaluate it.

$$\int_{0}^{\infty} e^{4x} \ dx$$

4. (6 pts) Sketch and shade in the region in the first quadrant bounded by the curves

$$y = \sqrt[3]{x}$$
 and $y = x^3$.

Find the area of this region.



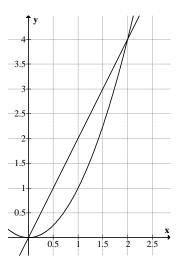
5. (6 pts) Sketch and shade in the region bounded by the x-axis and the curves

$$y = \sqrt{x}$$
, $x = 1$ and $x = 3$.

Find the volume generated by revolving this region about the \underline{x} -axis.



6. (6 pts) Let R be the region in the first quadrant bounded above by y = 2x and below by $y = x^2$. Set up, **but do not evaluate**, the sum of integrals that represent the perimeter of R.



7. (6 pts) The value of π can be calculated as follows:

$$\pi = 4 \int_0^1 \frac{1}{1 + x^2} \, dx$$

Use Simpson's Rule with n=4 to estimate the value of π . Do **not** simplify your answer.

8. Determine whether the following series **converge** or **diverge**. Justify your answer by referencing AND applying the appropriate convergence test. Show that the requirements of the test being used are satisfied.

a.
$$(6 \text{ pts}) \sum_{k=0}^{\infty} \frac{5^k}{1+6^k}$$

b. (6 pts) $\sum_{n=0}^{\infty} \frac{n^5}{n^5 + 2016}$

9. (6 pts) Find the radius of convergence for the power series
$$A = \sum_{k=1}^{\infty} \frac{(x-2)^k}{k^3 3^k}.$$

10. (8 pts) The power series

$$A = \sum_{n=0}^{\infty} \frac{(-1)^n (x-1)^{2n+1}}{2n+1}$$

has interval of convergence $0 \le x \le 2$.

a. For which values of x does the power series A converge absolutely? Justify your answer by <u>referencing AND applying</u> the appropriate convergence test. Show that the requirements of the test being used are satisfied.

b. For which values of x does the power series A converge conditionally?

- 11. Maclaurin and Taylor series
 - a. (6 pts) Find the Taylor series generated by $f(x) = x^4$ centered at x = -1.

b. (5 pts) Using the fact that the Maclaurin series for
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1},$$

find the Maclaurin series for $2 \sin x \cos x$. Give your answer in **summation form**. (Hint: A trigonometric identity is very useful here.)

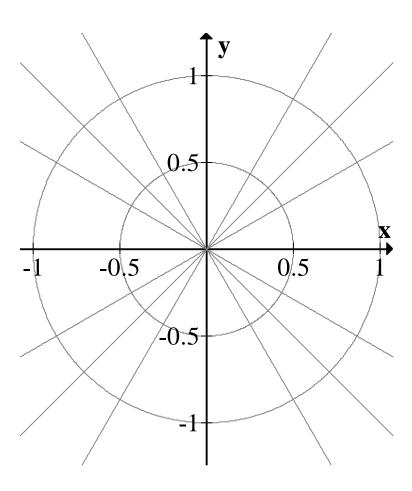
12. (5 pts) On the grid provided, plot the polar curve

$$r = \sin 2\theta$$
.

On the grid provided, mark and label the nine points on the curve where

$$\theta = 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6}, \pi.$$

NOTE: $\sqrt{2}/2 \approx 0.7 \quad \sqrt{3}/2 \approx 0.9$



THIS PAGE IS INTENTIONALLY BLANK

Disk Method:
$$V = \int_a^b \pi [R(x)]^2 dx$$

Disk Method:
$$V = \int_a^b \pi[R(x)]^2 dx$$
 Washer Method: $V = \int_a^b \pi([R(x)]^2 - [r(x)]^2) dx$

Shell Method:
$$V = \int_a^b 2\pi r(x)h(x) dx$$

Shell Method:
$$V = \int_a^b 2\pi r(x)h(x) dx$$
 Surface Area: $S = \int_a^b 2\pi \cdot f(x)\sqrt{1 + \left(f'(x)\right)^2} dx$

Arc Length Formula:
$$L = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

Useful Trigonometric Identities:
$$\cos^2\theta = \frac{1+\cos 2\theta}{2}$$
; $\sin^2\theta = \frac{1-\cos 2\theta}{2}$; $\sin 2\theta = 2\sin\theta\cos\theta$

The *n*-th Term Test for Divergence: $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n\to\infty} a_n$ fails to exist or is different from zero.

The Limit Comparison Test: Let $\sum a_n$ and $\sum b_n$ be series with positive terms and suppose $\rho = \lim_{n \to \infty} \frac{a_n}{b_n}.$

- a) If ρ is finite and $\rho > 0$, then the series both converge or both diverge.
- b) If $\rho = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- c) If $\rho = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Ratio Test: Let $\sum u_n$ be a series with nonzero terms and suppose $\rho = \lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|}$.

- a) If $\rho < 1$, the series converges absolutely.
- b) If $\rho > 1$ or $\rho = \infty$, the series diverges.
- c) If $\rho = 1$, the series may converge or diverge.

Alternating Series Test: An alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges if the following three conditions are satisfied:

1)
$$a_n > 0$$
 for all n

$$2) \lim_{n \to \infty} a_n = 0$$

3)
$$a_n \ge a_{n+1}$$
 for all $n \ge N$ for some N

The *n*-th Taylor polynomial for f about x=a is $p_n(x)=\sum_{k=0}^n \frac{f^{(k)}(a)}{b!}(x-a)^k$

The **Taylor series** for f about x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$

Symmetry Tests for Polar Graphs

- 1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, then $(r, -\theta)$ or $(-r, \pi \theta)$ also lies on the graph.
- 2. Symmetry about the y-axis: If the point (r, θ) lies on the graph, then $(r, \pi \theta)$ or $(-r, -\theta)$ also lies on the graph.
- 3. Symmetry about the origin: If the point (r, θ) lies on the graph, then $(-r, \theta)$ or $(r, \theta + \pi)$ also lies on the graph.

Area Enclosed by a Polar Curve: $A=\int_{lpha}^{eta} \frac{1}{2} r^2 \ d heta$

Arc Length of a Polar Curve: $L=\int_{lpha}^{eta}\sqrt{r^2+\left(rac{dr}{d
ho}
ight)^2}\,d heta$