Name		Section
		
Student ID Number	Instructor	

Instructions: No note or calculators are allowed. Answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. **Work must be neat, organized and easily interpreted.**

A page of useful information has been included on the last page of the exam.

Please circle your final answers.

Notes:

0! = 1 and if n > 0 then $n! = 1 \times 2 \times 3 \times \cdots \times n$

Page #	Point Value	Grade
3	14	
4	7	
5	7	
6	7	
7	7	
8	7	
9	12	
10	12	
11	7	
12	7	
13	7	
14	6	
Total	100	

THIS PAGE IS INTENTIONALLY BLANK

1. Evaluate the integrals:

a. (7 pts)
$$\int_0^1 \frac{x^{1/6} dx}{\sqrt{12x^{7/6}+4}}$$

b. $(7 \text{ pts}) \int xe^{2x+3} dx$

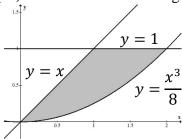
c. $(7 \text{ pts}) \int \sin^2(7x) \cos^5(7x) dx$

d. (7 pts)
$$\int \frac{1}{x^2 \sqrt{x^2 - 25}} dx$$

e.
$$(7 \text{ pts}) \int \frac{1}{(x-1)(x+2)(x-3)} dx$$

f.
$$(7 \text{ pts}) \int_{-\infty}^{0} \frac{1}{(2x-1)^3} dx$$

2. (7 pts) Consider the shaded region:



Find the <u>volume</u> of the solid generated by revolving the shaded region about the <u>x-axis</u>.

3. Determine whether the following series **converge** or **diverge**. Justify your answer by referencing AND applying the appropriate convergence test. Show that the requirements of the test being used are satisfied.

a.
$$(6 \text{ pts}) \sum_{k=1}^{\infty} \ln \left(\frac{1}{k}\right)$$

b. $(6 \text{ pts}) \sum_{n=1}^{\infty} \frac{n(n+3)}{(n+1)(n+2)(n+5)}$

c.
$$(6 \text{ pts}) \sum_{n=1}^{\infty} (-1)^{n+1} \cdot n \left(\frac{2}{3}\right)^n$$

d. (6 pts)
$$\sum_{k=1}^{\infty} (-1)^k e^{-k}$$

4. (7 pts) Find the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n-2}}{(2n+1)!}$$

Interval of Convergence:

5. (7 pts) Find the interval of convergence for the power series

$$\sum_{n=0}^{\infty} 2^n (x-3)^n$$

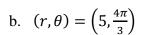
Also, find the sum of the series (as a function of x) on its interval of convergence.

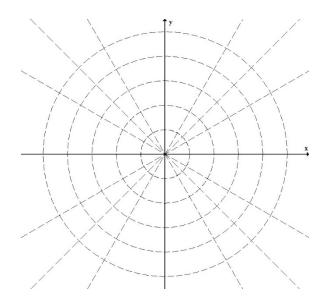
Interval of Convergence: _____ Sum of the series: _____

6. (7 pts) Find the Taylor **series** generated by $f(x) = e^x$ at a = 2.

7. (4 pts) Find the Cartesian coordinates of the following points given in polar coordinates and sketch them on the given coordinate system.

a.
$$(r, \theta) = (-3, \pi)$$





8. (2 pts) Find the polar coordinates, $0 \le \theta < 2\pi$ and $r \ge 0$, of the following points given in Cartesian coordinates.

a.
$$(x,y) = (\sqrt{2}, \sqrt{2})$$

b.
$$(x, y) = (-4\sqrt{3}, 4)$$

THIS PAGE IS INTENTIONALLY BLANK

Disk Method: $V = \int_a^b \pi[R(x)]^2 dx$ Washer Method: $V = \int_a^b \pi([R(x)]^2 - [r(x)]^2) dx$

Shell Method: $V = \int_a^b 2\pi r(x)h(x) dx$ Surface Area: $S = \int_a^b 2\pi \cdot f(x) \sqrt{1 + \left(f'(x)\right)^2} dx$

Arc Length Formula: $L = \int_a^b \sqrt{1 + (f'(x))^2} dx$

Useful Trigonometric Identities: $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$; $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$; $\sin 2\theta = 2 \sin \theta \cos \theta$

The n-th Term Test for Divergence: $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n\to\infty} a_n$ fails to exist or is different from zero.

The Limit Comparison Test: Let $\sum a_n$ and $\sum b_n$ be series with positive terms and suppose $L = \lim_{n \to \infty} \frac{a_n}{b_n}.$

- a) If L is finite and L>0, then the series both converge or both diverge.
- b) If L=0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- c) If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Ratio Test: Let $\sum a_n$ be a series with nonzero terms and suppose $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$.

- a) If ρ < 1, the series converges absolutely.
- b) If $\rho > 1$ or $\rho = \infty$, the series diverges.
- c) If $\rho = 1$, then the test is inconclusive, use a different test.

Alternating Series Test: An alternating series $\sum_{n=1}^{\infty} (-1)^n u_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ converges if the following three conditions are satisfied:

1)
$$u_n > 0$$
 for all $n \ge N$

$$\lim_{n\to\infty}u_n=0$$

2)
$$\lim_{n\to\infty} u_n = 0$$
 3) $u_n \ge u_{n+1}$ for all $n \ge N$ for some N

The n-th Taylor polynomial for f about x=a is $p_n(x)=\sum_{k=0}^n \frac{f^{(k)}(a)}{b!}(x-a)^k$

The **Taylor series** for f about x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$

Symmetry Tests for Polar Graphs

- 1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, then $(r, -\theta)$ or $(-r, \pi \theta)$ also lies on the graph.
- 2. Symmetry about the y-axis: If the point (r,θ) lies on the graph, then $(r,\pi-\theta)$ or $(-r,-\theta)$ also lies on the graph.
- 3. Symmetry about the origin: If the point (r, θ) lies on the graph, then $(-r, \theta)$ or $(r, \theta + \pi)$ also lies on the graph.

Area Enclosed by a Polar Curve: $A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$

Arc Length of a Polar Curve: $L=\int_{\alpha}^{\beta}\sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2}\,d\theta$