Name \qquad Section \qquad
Student ID Number \qquad Instructor \qquad
Instructions: No note or calculators are allowed. Answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. Work must be neat, organized and easily interpreted.

A page of useful information has been included on the last page of the exam.
Please circle your final answers.

Notes:
$0!=1$ and if $n>0$ then $n!=1 \times 2 \times 3 \times \cdots \times n$

Number	Point Value	Grade
$1 \mathrm{a}-\mathrm{b}$	10	
$1 \mathrm{c}-\mathrm{d}$	10	
1 e	7	
1 f	7	
$2-3$	10	
$4-5$	11	
$6 \mathrm{a}-\mathrm{b}$	10	
$6 \mathrm{c}, 7$	10	
8	10	
9	10	
10	5	
Total	100	

1. Evaluate the integrals:
a. (5 pts) $\int x^{2} \sqrt{x-2} d x$ (Hint: Use u-Substitution.)
b. (5 pts) $\int x^{2} \ln 5 x d x$
c. $(5 \mathrm{pts}) \int_{0}^{\pi / 8} \tan ^{2} 2 x \sec ^{2} 2 x d x$
d. $(5$ pts $) \int \cos ^{3}(x) \sin ^{2}(x) d x$
e. (7 pts) $\int \frac{\sqrt{x^{2}-9}}{x} d x$ (Hint: Use Trigonometric Substitution.)
f. (7 pts) $\int \frac{x+3}{(x-2)(x+1)} d x$ (Hint: Use Partial Fractions.)
2. (5 pts) Sketch and shade in the region bounded by the curves

$$
y=2 x-x^{2} \text { and } y=-3
$$

Set up, but do not evaluate, an integral to find the area. Do NOT solve the integral.

3. (5 pts) Sketch and shade in the region bounded by the curves

$$
y=x^{2}+1 \text { and } y=x+3
$$

Set up, but do not evaluate, an integral or sum of integrals that gives the volume generated by revolving this region about the \underline{x}-axis. Do NOT solve the integral.

4. (6 pts) Find the area of the surface generated by rotating about the x-axis the arc of the curve $y=\sqrt{x}$ between $(0,0)$ and $(2, \sqrt{2})$.
5. (5 pts) Write the following improper integral in terms of the limit of a proper integral. Then determine whether the integral converges or diverges. If the integral converges, evaluate it.

$$
\int_{0}^{\infty} \frac{1}{2 x+1} d x
$$

6. Determine whether the following series converge or diverge. Justify your answer by referencing AND applying the appropriate convergence test. Show that the requirements of the test being used are satisfied.
a. $(5 \mathrm{pts}) \sum_{n=1}^{\infty} \ln \left(\frac{1}{n}\right)$
b. $(5 \mathrm{pts}) \sum_{k=2}^{\infty} \frac{\sqrt{k}}{k^{3}-1}$
c. $(5 \mathrm{pts}) \sum_{n=1}^{\infty} \frac{(n+3)!}{n!3^{n}}$
7. (5 pts) The alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{10^{n}}
$$

satisfies all of the conditions of the Alternating Series Test and therefore converges. Does the series converge absolutely or conditionally? Give a reason for your answer.
8. Power Series
a. (5 pts) Find the radius of convergence for the series

$$
\sum_{k=1}^{\infty} \frac{x^{k} e^{k}}{k+1}
$$

b. (5 pts) Find the series' interval of convergence and, within this interval, the sum of the series as a function of x.

$$
\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{4^{n+1}}
$$

9. Maclaurin and Taylor series
a. (5 pts) Find the Taylor series generated by $f(x)=x^{3}$ at $a=1$.
b. (5 pts) Using the fact that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad|x|<\infty,
$$

find the Maclaurin series for the function

$$
f(x)=x^{2} e^{2 x}
$$

10. (5 pts) On the grid provided, plot the polar curve $r=\cos \theta+\sin \theta$. Mark and label the nine points on the curve where $\theta=0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{6}, \pi$.

NOTE: $\sqrt{2} / 2 \approx 0.7 \quad \sqrt{3} / 2 \approx 0.9$

THIS PAGE IS INTENTIONALLY BLANK

Disk Method: $V=\int_{a}^{b} \pi[R(x)]^{2} d x$
Shell Method: $V=\int_{a}^{b} 2 \pi r(x) h(x) d x$

Washer Method: $V=\int_{a}^{b} \pi\left([R(x)]^{2}-[r(x)]^{2}\right) d x$ Surface Area: $S=\int_{a}^{b} 2 \pi \cdot f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

Arc Length Formula: $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
Useful Trigonometric Identities: $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} ; \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2} ; \sin 2 \theta=2 \sin \theta \cos \theta$
The \boldsymbol{n}-th Term Test for Divergence: $\sum_{n=1}^{\infty} a_{n}$ diverges if $\lim _{n \rightarrow \infty} a_{n}$ fails to exist or is different from zero.
The Limit Comparison Test: Let $\sum a_{n}$ and $\sum b_{n}$ be series with positive terms and suppose $\rho=$ $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.
a) If ρ is finite and $\rho>0$, then the series both converge or both diverge.
b) If $\rho=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
c) If $\rho=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Ratio Test: Let $\sum u_{n}$ be a series with nonzero terms and suppose $\rho=\lim _{n \rightarrow \infty} \frac{\left|u_{n+1}\right|}{\left|u_{n}\right|}$.
a) If $\rho<1$, the series converges absolutely.
b) If $\rho>1$ or $\rho=\infty$, the series diverges.
c) If $\rho=1$, the series may converge or diverge.

Alternating Series Test: An alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges if the following three conditions are satisfied:

1) $a_{n}>0$ for all n
2) $\lim _{n \rightarrow \infty} a_{n}=0$
3) $a_{n} \geq a_{n+1}$ for all $n \geq N$ for some N

The \boldsymbol{n}-th Taylor polynomial for f about $x=a$ is $p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
The Taylor series for f about $x=a$ is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$

Symmetry Tests for Polar Graphs

1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, then $(r,-\theta)$ or $(-r, \pi-\theta)$ also lies on the graph.
2. Symmetry about the y-axis: If the point (r, θ) lies on the graph, then $(r, \pi-\theta)$ or $(-r,-\theta)$ also lies on the graph.
3. Symmetry about the origin: If the point (r, θ) lies on the graph, then $(-r, \theta)$ or $(r, \theta+\pi)$ also lies on the graph.
Area Enclosed by a Polar Curve: $A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$
Arc Length of a Polar Curve: $L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$
