
Turbo-codes: the ultimate
error control codes?

by A. Burr

Turbo-codes have attracted a great deal of interest since their discovery in 1993. This
paper reviews the reasons for this, in particular their attainment of the ultimate limits

of the capacity of a communication channel. The paper describes the two
fundamental concepts on which they are based: concatenated coding and iterative

decoding. This latter is the real ‘turbo-principle’, which is the real secret of their
remarkable performance. The paper also reviews the direction of research in this area
since 1993, and shows that, far from bringing coding research to an end, turbo-codes

have led to a renaissance. In particular, other applications of the ‘turbo-principle’
have emerged, and these are discussed, along with the practical applications of
turbo-codes that have appeared, from mobile radio to deep-space exploration.
1 Introduction

Turbo-codes promise the attainment of the ‘Holy Grail’ of
communication theory, sought for nearly half a century:
to achieve the ultimate limits of capacity of a communi-
cation channel. It is not surprising, therefore, that they
have very rapidly moved from the research laboratories
to find practical application throughout the world and
beyond it. Following their announcement in 1993, they
have found a very wide range of applications, mainly in
wireless communications, ranging from the third
generation mobile systems to deep-space exploration.

To understand the reason for
the interest they have aroused, we
must first review the limits to
communication system capacity
discovered more than 50 years
ago by Claude Shannon (who also
introduced the whole topic of
error-control coding1) and this is
done in the next section. We shall
then introduce the two concepts
that are the basis of turbo-codes:
concatenated coding and iterative
decoding. This latter is the real
secret of turbo-codes, and also the
basis of their name.

But will the discovery of turbo-
codes put an end to the story of
error control coding? It might be
expected that the discovery of the
ultimate codes would make any
further work unnecessary, but in
fact the reverse seems to be the
case: it has resulted in a
renaissance of coding research,
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both in universities and in industry world-wide. This has
already led to the discovery of a range of related codes of
equivalent power, and to other applications of the ‘turbo’
principle, which we will also consider at the end of this
article.

2 The limits to capacity

In 1948 Claude Shannon was working at Bell Laboratories
in the USA on the fundamental information transmission
capacity of a communication channel2. (In doing so he also
rigorously quantified the concept of ‘information’, and
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thus founded the discipline of information theory.) He
showed that a communication channel is in principle able
to transmit information with as few errors as we wish,
even if the channel is subject to errors due to noise or
interference, provided the capacity of the channel is not
exceeded. This capacity depends on the signal-to-noise
ratio (SNR)—the ratio of the signal power to noise
power—as shown in Fig. 1.

Note that the capacity obtainable by conventional
means is much less than this capacity limit. For example,
the ‘x’ mark on Fig. 1 shows the performance achieved on
a radio system with a simple modulation scheme: binary
phase-shift keying (BPSK). This is for a bit error ratio
(BER) of 0·001, which is low enough for only a few
services, such as speech, whereas the Shannon theory
encoder 1 encoder 2 encoder n

outer code inner code channel

decoder 1 decoder 2 decoder n

Fig. 2 Principle of concatenated codes
promises an arbitrarily low BER. Note that at the same
SNR a capacity several times greater could be achieved;
or equivalently that the same capacity could be achieved
with a signal power many decibels lower. This highlighted
the potential gains available and led to the quest for
techniques that could achieve this capacity in practice.

Shannon did in fact also show in principle how to
achieve capacity. The incoming data should be split into
blocks containing as many bits as possible (say k bits).
Each possible data block is then mapped to another block
of n code symbols, called a codeword, which is transmitted
over the channel. The set of codewords, and their
mapping to data blocks, is called a code3, or more
specifically a forward error correcting (FEC) code. At the
receiver there is a decoder, which must find the codeword
that most closely resembles the word it receives,
including the effects of noise and interference on the
channel. The decoder is more likely to confuse
codewords that resemble one another more closely:
hence the power of the code to correct errors and
overcome noise and interference depends on the degree
of resemblance. This is characterised in terms of the
minimum number of places in which any two codewords
differ, called the Hamming distance.

Remarkably, Shannon showed that capacity could be
achieved by a completely random code, that is a randomly
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chosen mapping set of codewords. The drawback is that
this performance is approached only as k and n tend to
infinity. Since the number of codewords then increases as
2k, this makes the decoder’s search for the closest
codeword quite impractical, unless the code provides for
a simpler search technique.

This motivated a quest which was to last for the next 45
years for practical codes and decoding techniques that
could achieve Shannon’s capacity bounds. Many good
codes and decoders were found3,4, but none that actually
approached the limit. In fact it has been remarked that (in
view of the fact that there must be infinitely many good
random codes) ‘all codes are good, except for the ones we
can think of’5! It was also surmised that for practical
purposes a capacity limit applied that was a few decibels

lower than Shannon’s, called
the cut-off rate bound.

Hence there was a great deal
of interest, not to mention
scepticism, when results were
announced in 19936 that
significantly exceeded the cut-
off rate bound, and approached
within 0·7 dB of the Shannon
bound. The work was by
Berrou, Glavieux and Thitimaj-
shima, a group previously
unknown in the coding
community, and was presented
at the International Conference
on Communications (ICC). In
fact similar results had been
submitted to ICC the previous
year, but the paper had been

rejected by the referees as too good to be true. However
once published the results were very soon verified by
many independent researchers.

Despite the suddenness with which they burst upon the
scene, turbo-codes were in fact based on two previously
known concepts, namely concatenated coding and iterative
decoding, which we will now consider in more detail.

3 Concatenated codes

We have seen that the power of FEC codes increases with
length k and approaches the Shannon bound only at very
large k, but also that decoding complexity increases very
rapidly with k. This suggests that it would be desirable to
build a long, complex code out of much shorter
component codes, which can be decoded much more
easily. Concatenation provides a very straightforward
means of achieving this (Fig. 2). The principle is to feed
the output of one encoder (called the outer encoder) to the
input of another encoder, and so on, as required. The final
encoder before the channel is known as the inner
encoder. The resulting composite code is clearly much
more complex than any of the individual codes. However
it can readily be decoded: we simply apply each of the
component decoders in turn, from the inner to the outer.

This simple scheme suffers from a number of
MMUNICATION ENGINEERING JOURNAL AUGUST 2001
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drawbacks, the most significant of which is called error
propagation. If a decoding error occurs in a codeword, it
usually results in a number of data errors. When these are
passed on to the next decoder they may overwhelm the
ability of that code to correct the errors. The performance
of the outer decoder might be improved if these errors
were distributed between a number of separate
codewords. This can be achieved using an interleaver/
de-interleaver. The simplest type of interleaver is
illustrated in Fig. 3: much more complex versions will be
encountered later.

This simple interleaver (sometimes known as a
rectangular or block interleaver: we will use the former
term) consists of a two-dimensional array, into which the
data is read along its rows. Once the array is full, the 
data is read out by columns, thus permuting the order of
the data. (Because it performs a permutation, an
interleaver is commonly denoted by the Greek letter 
π, and its corresponding de-interleaver by π–1.) The
original order can then be restored by a corresponding 
de-interleaver: an array of the same dimensions in which
the data is read in by columns and read out by rows.

This interleaver may be placed
between the outer and inner
encoders of a concatenated code
that uses two component codes,
and the de-interleaver between the
inner and outer decoders in the
receiver, as shown in Fig. 4. Then,
provided the rows of the
interleaver are at least as long as
the outer codewords, and the
columns at least as long as the
inner data blocks, each data bit of
an inner codeword falls into a
different outer codeword. Hence,
provided the outer code is able to
correct at least one error, it can
always cope with single decoding
errors in the inner code.

Usually the block codes used in
such a concatenated coding
scheme are systematic: that is, the

outer
encoder

outer
decoder

Fig. 4 Concatenated e
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k data bits appear in the codeword, along with n – k parity
or check bits, which allow the data bits to be corrected if
errors occur3, making a codeword of length n. Now
suppose the outer code has data length k1 and code length
n1, while the inner code has data length k2 and code length
n2, and the interleaver has dimension k2 rows by n1

columns. Then the parity and data bits may be arranged
in an array as shown in Fig. 5. Part of this array (within
the heavy line) is stored in the interleaver array: the rows
contain codewords of the outer code. The parity of the
inner code is then generated by the outer encoder as it
encodes the data read out of the interleaver by columns.
This includes the section of the array generated by
encoding the parity of the outer code in the inner code,
marked ‘Checks on checks’ in the figure. The columns of
the array are thus codewords of the inner code. Observe
that the composite code is much longer, and therefore
potentially more powerful, than the component codes: it
has data length k1 × k2 and overall length n1 × n2.

These codes have been well known for some time7: they
are called array or product codes (because the
concatenation is in the nature of a multiplicative process).
π
inner

encoder

channel

π–1
inner

decoder

ncoder and decoder with interleaver
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The innovation brought by the advent of turbo-codes was
the decoding technique: iterative decoding.

4 Iterative decoding: the ‘turbo’ principle

The conventional decoding technique for array codes is
that shown in Fig. 4: the inner code is decoded first, then
the outer. However, this may not always be as effective as
we might hope.

Consider a received codeword array with the pattern of
errors shown by the ‘O’s in Fig. 6. Suppose that both
component codes are capable of correcting single errors
only. As mentioned above, if there are more errors than
k1

k 2
n 2

n1

Outer code
parity (row)

Inner code
parity (column)

‘Checks on
checks’

O

X

O

O

X

O

+

+

Fig. 5 Array for interleaved concatenated code

Fig. 6 Pattern of received errors (‘O’) in codeword array, with errors introduced
by inner (column) decoder (‘X’) and outer (row) decoder (‘+’)
this the decoder may actually introduce further errors
into the decoded word. For the pattern shown this is the
case for two of the column codewords, and errors might
be added as indicated by ‘X’. When this is applied to the
outer (row) decoder some of the original errors may be
corrected (indicated by a cross through the ‘O’), but yet
more errors may be inserted (marked with ‘+’). However,
the original pattern would have been decoded correctly
had it been applied to the row decoder first, since none of
the rows contains more than one error.
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Note that if the output of the outer decoder were
reapplied to the inner decoder it would detect that some
errors remained, since the columns would not be
codewords of the inner code. (A codeword of a single-
error correcting code must contain either no errors or at
least three.) This in fact is the basis of the iterative
decoder: to reapply the decoded word not just to the inner
code, but also to the outer, and repeat as many times as
necessary. However, it is clear from the foregoing
argument that this would be in danger of simply
generating further errors. One further ingredient is
required for the iterative decoder.

That ingredient is soft-in, soft-out (SISO) decoding. It is
well known (see Section 5.6.2 of
Reference 4) that the performance of
a decoder is significantly enhanced
if, in addition to the ‘hard decision’
made by the demodulator on the
current symbol, some additional ‘soft
information’ on the reliability of that
decision is passed to the decoder.
For example, if the received signal is
close to a decision threshold (say
between 0 and 1) in the demodulator,
then that decision has low reliability,
and the decoder should be able to
change it when searching for the
most probable codeword. Making
use of this information in a
conventional decoder, called soft-
decision decoding, leads to a
performance improvement of around
2dB in most cases.

In the decoder of a concatenated
code the output of one decoder
provides the input to the next. Thus
to make full use of soft-decision
decoding requires a component
decoder that generates ‘soft
information’ as well as making use of
it. This is the SISO decoder. Soft
information usually takes the form of
a log-likelihood ratio for each data bit.
The likelihood ratio is the ratio of the
probability that a given bit is ‘1’ to the
probability that it is ‘0’. If we take the
logarithm of this, then its sign
corresponds to the most probable
hard decision on the bit (if it is
positive, ‘1’ is most likely; if negative,

then ‘0’). The absolute magnitude is a measure of our
certainty about this decision.

Subsequent decoders can then make use of this
reliability information. It is likely that decoding errors will
result in a smaller reliability measure than correct
decoding. In the example this may enable the outer (row)
decoder to correctly decode some of the errors resulting
from the incorrect inner decoding. If not it may reduce 
the likelihood ratio of some, and a subsequent
reapplication of the column decoder may correct more 
MMUNICATION ENGINEERING JOURNAL AUGUST 2001



of the errors, and so on.
Note that the log-likelihood ratio

exactly mirrors Shannon’s quantita-
tive measure of information
content, mentioned above, in which
the information content of a symbol
is measured by the logarithm of its
probability. Thus we can regard the
log-likelihood ratio as a measure of
the total information we have about
a particular bit. In fact this
information comes from several
separate sources. Some comes from
the received data bit itself: this is
known as the intrinsic information.
Information is also extracted by the
two decoders from the other
received bits of the row and the
column codeword. When decoding one of these codes,
the information from the other code is regarded as
extrinsic information. It is this information that needs to be
passed between decoders, since the intrinsic information
is already available to the next decoder, and to pass it on
would only dilute the extrinsic information.

Hence the iterative decoder has the structure shown in
Fig. 7, in which the intrinsic information has been
separated from the extrinsic, so that the output of each
decoder contains only extrinsic information to pass on to
the next decoder. After the outer code has been decoded
for the first time both the extrinsic information and the
received data are passed back to the first decoder, re-
interleaved back to the appropriate order for this decoder,
and the whole process iterated again. It is this feedback
that has given rise to the term ‘turbo-code’, since the
original inventors likened the process to a turbo-charged
engine, in which part of the power
at the output is fed back to the input
to boost the performance of the
whole system. Thus the term
‘turbo’ should really be applied to
the decoder structure rather than
the codes themselves.

This structure assumes that the
decoders operate much faster than
the rate at which incoming data
arrives, so that several iterations
can be accommodated in the time
between the arrivals of received
data blocks. If this is not the case,
the architecture may be replaced by
a pipeline structure, in which data
and extrinsic information are
passed to a new set of decoders
while the first one processes the
next data block. In either structure
at some point the decoder may be
deemed to have converged to the
optimum decoded word, at which
point the combination of extrinsic
and intrinsic information can be
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used to find the decoded data. Usually a fixed number of
iterations is used—between 4 and 10, depending on the
type of code and its length—but it is also possible to
detect convergence and terminate the iterations at that
point8.

5 Parallel-concatenated recursive-systematic 
convolutional codes: turbo-codes

However turbo-codes are not in fact based on
concatenated block codes of this sort (although we will
come back to these product codes later). The turbo-codes
invented by Berrou et al. should more formally be
described as parallel-concatenated recursive systematic
convolutional codes. (It is little surprise that the inventors’
term ‘turbo-codes’ is much more popular!) We will now
‘unpack’ the meaning of these terms.
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enation: (a) encoder structure; (b) code array
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Parallel-concatenated codes
The concatenated codes considered in Section 3 are

more fully described as serial-concatenated codes, because
the two encoders are connected in series. There is an
alternative connection, called parallel concatenation, in
which the same data is applied to two encoders in parallel,
but with an interleaver between them, as shown in Fig. 8a.
If systematic block codes and a rectangular interleaver
are used, as in Section 3, but the systematic component of
the second code output is not transmitted (since it is
duplicated), then the code array is as shown in Fig. 8b. It
is essentially the same as in Fig. 5, except that the ‘checks
on checks’ are not present.

In turbo-codes the interleaver is not usually rectangular
(i.e. not like that of Fig. 3), but for reasons that we will
shortly examine it is pseudorandom, that is the data is read
out in a predefined pseudorandom order. The design of
interleaver is one of the key features of turbo-codes.
Further, the encoders are not block codes, but
convolutional codes.

Convolutional codes
Convolutional codes are fundamentally different from

the block codes that we described in Section 2, and which
were applied in the concatenated codes of Section 3. It is
not possible to separate the codes into independent
blocks. Instead each code bit depends on a certain
number of previous data bits. They can be very
conveniently encoded using a structure consisting of a
shift register, a set of exclusive-OR (XOR) gates, and a
160 ELECTRONICS & CO
multiplexer, as shown for a typical example in Fig. 9.
In these codes the concept of a codeword is replaced by

that of a code sequence. Note, for example, that if a single
data ‘1’ is input (in a long sequence of data ‘0’s) the result
will be a sequence of code ‘0’s and ‘1’s as the ‘1’ propagates
along the shift register, returning to ‘0’s once the ‘1’ has
passed through. The contents of the shift register define
the state of the encoder: in this example it is non-zero
while the ‘1’ propagates through it, then returns to the
zero state.

Parallel concatenation as illustrated in Fig. 8 clearly
depends on using systematic codes. However the code of
Fig. 9 is not systematic: the code sequence does not
contain the data sequence. It could be made systematic by
driving one of the inputs to the multiplexer directly from
the data input. However it can be shown9, p.312 that such
codes are necessarily less powerful than non-systematic
codes like that of Fig. 9. It is evident from the discussion
of parallel concatenation above that a systematic code
would be desirable. Fortunately there is a method of
rearranging a non-systematic code in a systematic form
that also has some other very desirable properties for
turbo-codes.

Recursive-systematic coding
This rearrangement takes the form of introducing

feedback to the encoder: for example the encoder of 
Fig. 9 becomes that of Fig. 10. It can quite easily be shown
that the code generated by these two forms of encoder are
equivalent (Section 7.1.3 of Reference 4) in that they
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+
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Fig. 10 Recursive-systematic form of the encoder of Fig. 9
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contain the same set of code sequences: the difference
lies in the mapping between data and code sequence. The
code of Fig. 10 is clearly systematic, since one of the
sequences fed to the multiplexer is the data stream. The
other may be called the parity stream.

The behaviour of the two encoders with the same data
sequence is nevertheless quite different. If a data
sequence containing a single ‘1’ is fed to the recursive-
systematic encoder, because of the feedback the encoder
will never return to the zero state but will continue
indefinitely to produce a pseudorandom sequence of ‘1’s
and ‘0’s. In fact only certain sequences, called terminating
sequences, which must contain at least two ‘1’s, will bring
the encoder back to the zero state.

To see why this is a useful property in a parallel-
concatenated code we must consider the minimum
Hamming distance of the codes, mentioned in Section 2
above, where we noted that the larger the Hamming
distance, the more powerful the code. For these codes, as
for most codes, the minimum
Hamming distance is in fact equal
to the minimum number of ‘1’s in
any code sequence. Clearly a non-
terminating data sequence, or one
that terminates only after a long
period, corresponds to a large
Hamming distance. Now in a
parallel-concatenated code the
same data sequence is interleaved
and applied to a second encoder
(Fig. 8a). If a given data sequence
happens to terminate the first
encoder quickly, it is likely that
once interleaved it will not
terminate the second encoder, and
thus will result in a large Hamming
distance in at least one of the two
encoders.

This is why the design of the
interleaver is important. Data sequences that terminate
both encoders quickly may readily be constructed for a
rectangular interleaver. Moreover the regularity of its
structure means that there are a large number of such
sequences: the same pattern placed anywhere in the
interleaver array will result in the same behaviour. A
pseudorandom interleaver is preferable because even if
(by chance) data sequences exist which result in a low
overall Hamming distance, there will be very few of them,
since the same sequence elsewhere in the input block will
be interleaved differently.

Notice that if we simply place the recursive-systematic
encoder of Fig. 10 in the parallel concatenated system of
Fig. 8a, the resulting code will contain the systematic data
twice. Hence the structure of Fig. 11 is used: one copy of
the systematic data stream is multiplexed into the code
stream along with the parity streams from each of the
recursive encoders. Even this arrangement will result in
a code of rate 1⁄3, a relatively low rate. This is commonly
increased by puncturing the two parity streams. For
example one bit might be deleted from each of the parity

+

+

π

data

Fig. 11 Turbo-encode
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streams in turn, so that one parity bit remains for each
data bit, resulting in a rate 1⁄2 code. Other rates are also
possible by puncturing different proportions of the parity
streams.

Fig. 12 shows the iterative decoder for these codes. It is
fundamentally the same as the decoder of Fig. 7, but the
separate parity streams are shown separately. If the code
is punctured, ‘dummy’ parity symbols are reinserted in
the parity streams to replace those that were deleted.
These ‘dummy’ symbols take a level half way between the
‘1’ level and the ‘0’ level, and so when applied to the SISO
decoders do not bias the decoding.

6 Performance and drawbacks of turbo-codes

The remarkable results that these techniques can
produce are well illustrated in Fig. 13, which shows the
performance of the ‘original’ turbo-code described by
Berrou et al.6, as determined by simulation. (The BER is
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plotted against bit energy to noise density ratio, which is
directly proportional to SNR.) This shows that after one
decoder iteration performance is good, but not
outstanding. A further iteration results in a significant
improvement, which continues with diminishing but still
worthwhile returns. At 18 iterations the code achieves a
BER better than 10–5 at a bit energy to noise density ratio
of 0·7dB—and for this code rate the Shannon bound is
0dB. Thus was achieved a performance closer to the
bound than anyone had previously imagined was possible.

Note, however, that this code uses an interleaver of
length 65536 bits (64Kbits). Since this number of bits
must inevitably be stored in the interleaver in the encoder
and/or the decoder at any given time, this means that
there is a latency at least this large. This in turn implies a
delay through the encoder/decoder combination given
by the product of the information bit period and the
latency. Thus for an information rate of (say) 8kbit/s
(appropriate for speech transmission), there is a delay of
65536/8 = 8192ms, or more than 8s. This delay is quite
unacceptable in a telephone system, since it would be
RNAL AUGUST 2001 161
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Fig. 12 Iterative turbo-decoder
highly disruptive of any conversation. In fact the delay
limitation for speech services on wireless links is usually
taken as 40ms, which corresponds to a latency of 320.
Thus if a turbo-code is to be used for speech services at
this data rate the interleaver can be no larger than this.

Turbo-codes can be used with interleavers as short as
this, but there are performance penalties to be paid. The
first is inherent: the Shannon bound as plotted in Fig. 1
actually applies only if latency is unlimited. For limited
latency Shannon subsequently showed10 that capacity is
further reduced, and at a latency of 320 this loss is
equivalent to nearly 2dB. In practice, however, a further
problem arises: the so-called error floor.

In Fig. 13 we observe that the BER curve is very steep.
However it has been noted for many turbo-codes that at a
lower BER the curve flattens a little (although the term
‘error floor’ exaggerates this flattening). This occurs
because although the effect of the pseudorandom
interleaver means that code sequences at small Hamming
distances are rare, they may nevertheless occur
somewhere in the code. These then result in a small
residual BER term which does not decrease so rapidly
with signal-to-noise ratio. The probability of such
sequences, and hence the level of this ‘floor’, decreases
rapidly with increasing interleaver length. In Fig. 13 its
level is well below the bottom of the graph; Fig. 14 shows
the result for a much shorter code, in which a ‘floor’
appears at a BER around 10–6. Note, however, that this
code is still significantly better than other codes, such as
convolutional codes, which can meet this delay
requirement.
162 ELECTRONICS & CO
7 The ultimate codes? Other related codes

It might have been expected that the discovery of turbo-
codes would have rendered unnecessary any further
research in coding, but, as mentioned above, the reverse
seems to be the case. The discovery has led to something
of a renaissance in coding research, both theory and
practice. Practically, of course, researchers and
developers have been concerned to apply these codes in
new applications, and indeed turbo-codes achieved
practical application very soon after their discovery, as we
shall see in the next section. Another important issue was
the application of turbo-codes in more bandwidth-efficient
coded modulation techniques11, so as to fulfil the promise
of increased spectrum efficiency—another area which
has developed very rapidly (see Section 11.7 of Reference
4). However, the principles on which turbo-coding is
based, and especially the principle of iterative decoding,
have proved to be very fruitful in the development of other
new codes, related to but distinct from the ‘classical’
turbo-codes of Berrou and Glavieux.

The most obvious of these, perhaps, are the serial-
concatenated block codes, or product codes, as described
in Section 3 above. The codes themselves, as we have
said, were already well known, but after the announce-
ment of turbo-codes it was soon realised that the iterative
decoding technique could be used here, too, giving
results not much poorer than turbo-codes. This
development was termed turbo-product codes12, although
the innovation was not actually in the codes themselves
but in the decoder. It is easy to show that for these codes
MMUNICATION ENGINEERING JOURNAL AUGUST 2001



there are no low-weight (small
Hamming distance) codewords, and
thus there is no error floor. This means
that they may be better suited to
applications where latency (and hence
interleaver size) is limited but an error
floor would be unacceptable because of
the BER requirement. They also have
the advantage that high-rate block
codes exist, and thus it is easier to
implement code rates near to unity:
puncturing is not required. Further,
block codes have decoders that can
operate at high speeds (although they
need to be adapted to allow soft input
and output), which has led to ASIC
decoders for these codes that can
operate at very high data rates13.

An obvious generalisation of product
codes would be to use an array of more
than two dimensions (more than two
component codes). In this way the set
of parity bit calculations involving each
bit of the data becomes more and more
complex. Such codes turn out to be
special cases of another type of code
that has been known for many years:
the low-density parity check (LDPC) codes, or Gallagher
codes14, which date back to the 1960s. Soon after the
discovery of turbo-codes it was shown15 that these could
also be decoded using a version of the iterative decoding
algorithm. Although they do not approach the Shannon
bound quite so closely as turbo-codes, these codes also do
not exhibit an error floor. Another related code recently
discovered is the repeat-accumulate code16, which
concatenates two codes so simple as to be almost trivial,
to yield a very good overall performance.

Thus we now have available a plethora of code types, all
capable of performing very close to the
Shannon bound, with slightly different
characteristics that suit them to
different applications. We have also
advanced in our understanding of why
turbo-codes work so well, and in
particular of the operation of the
iterative decoder, with the introduction
of tools such as the factor graph17 and
the extrinsic information transfer
chart18, which may well lead to further
practical developments.

8 Applications of turbo-codes and
of the ‘turbo’ principle

Moreover many applications of the
‘turbo’ principle, which we have
already identified with the iterative
approach, have emerged that are not
exclusively concerned with turbo-
codes. It turns out that iterative
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processing can be applied in many other situations where
several processes are combined in the manner of a
concatenated encoder. This is in addition to the many
practical applications of turbo-coding itself, which we will
now consider.

The very first such application was (literally!) the most
far-reaching: deep-space exploration. FEC coding is
essential to maintain communication with spacecraft
exploring the solar system, because over the vast
distances involved signal power is at a premium. An
improvement of a small fraction of a decibel can make a
1 2
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Fig. 15 Surface of Mars seen from the Mars Rover (Courtesy of NASA/JPL/Caltech)
difference of millions of miles to the operational range of
a mission. The Jet Propulsion Laboratory (JPL), which
carries out research for NASA, was among the first to
realise the potential of turbo-codes, and as a result turbo-
codes were used in the Pathfinder mission of 1997 to
transmit back to Earth the photographs of the Martian
surface taken by the Mars Rover (Fig. 15).

However, of more practical significance to most of us is
likely to be their application to mobile communications.
Turbo-codes are one of the options for FEC coding in the
UMTS third generation mobile radio standard19. A great
deal of development has been carried out here, especially
on the design of interleavers of different lengths, for
application both to speech services, where latency must
be minimised, and to data services that must provide very
low BER.

Turbo-codes were discovered just too late to be
incorporated in the terrestrial digital video broadcast
(DVB-T) standard, which was finalised in the early 1990s,
but they have recently been incorporated into the
standard which will incorporate a return channel in digital
broadcast systems.

All these applications will require practical implemen-
tations of the turbo-decoder. Although the iterative
decoder makes decoding computationally feasible (by
breaking it down into decoding operations for much
simpler codes), it is still computationally complex,
especially if many iterations are required. The algorithm
can be implemented on DSP processors, but the
computational load required means that such a decoder,
using current DSP devices, could not operate at data rates
higher than a few tens of kilobits per second. A more
promising approach is custom-designed ASIC devices, or
field-programmable gate arrays (FPGAs). For example,
FPGA cores are now available which can operate at
164 ELECTRONICS & CO
90Mbit/s20. Even higher speed decoders exist for turbo-
product codes, because their component block codes
permit very high speed decoding: a rate of 500Mbit/s is
claimed13. These speeds mean that computational
complexity need not limit the maximum data rate
achievable in turbo-coded wireless systems.

There are many processes in a wireless
communications receiver which need to be performed
jointly for best results, but for which the receiver
complexity required would be excessive. In particular for
an FEC-coded system processes like synchronisation and
equalisation must be performed jointly with decoding for
the best results. Synchronisation, for example, which
involves carrier phase and symbol timing estimation,
becomes considerably more difficult in a coded system, if
performed separately before decoding, because the
coding gain and the higher coded symbol rate mean that
the synchroniser must work at a significantly lower signal-
to-noise ratio. On the other hand simultaneous decoding
and synchronisation becomes extremely complex,
because the additional degrees of freedom introduced by
synchronisation errors greatly increase the size of the
space that must be searched to find the optimum
decoding solution.

At this point we may invoke the ‘turbo-principle’ (even
if we are not using turbo-codes), which allows us to
perform synchronisation and decoding separately and
still obtain the same overall performance as joint
decoding and synchronisation. Fig. 16 illustrates joint
carrier recovery and decoding (assuming that symbol
timing is known). Initially, conventional, non-data-aided
carrier phase estimation is performed. The result is used
to decode the data. The decoded data is then fed back and
used to improve the carrier estimate, using data-aided
carrier recovery techniques, which can significantly

improve the carrier phase
estimate. This is then used to
improve the decoding result, and
so on. If the decoder outputs ‘soft
information’, as the turbo-decoder
does, this can be used to further
improve the process by allowing
the carrier phase estimator to
make use of reliability
information.

The same principle can be used
to combine decoding with many
similar processes, including
symbol timing recovery,
equalisation, multi-user detection
in CDMA systems, and channel
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estimation. It can be integrated particularly well with turbo-
decoding, since soft information is already available and
very little additional computational overhead is then
involved, but it will also work with most other types of code.

9 Conclusions

As we have seen, the reason turbo-codes have attracted so
much attention in the last few years is that they represent
the fulfilment of a quest, which lasted nearly 50 years, for
a practical means of attaining the Shannon capacity
bounds for a communication channel. We have reviewed
the basic principles of turbo-codes, namely concatenated
coding and iterative decoding, showing how it is that they
achieve such remarkable performance. We have
‘unpacked’ the more formal description of turbo-codes as
‘parallel-concatenated recursive-systematic convolutional
codes’.

But are these the ‘ultimate’ error correction codes? Will
they bring to an end the development of coding theory?
The answer appears to be ‘no’: on the contrary, they have
led to something of a renaissance of the subject. These
principles of concatenated coding and (especially)
iterative decoding have shown themselves to be very
fruitful in producing further new codes, or at least new
decoding techniques for old codes. Hence we have the
‘turbo-product codes’, in reality simply a new decoding
approach for the well-known product codes, and renewed
interest in Gallagher, or LDPC, codes, which date back to
the 1960s, as well as the repeat-accumulate codes and
many others. Applications of turbo-codes have also
proliferated, from mobile ’phones to the further reaches
of the solar system. The principles of turbo decoding can
also be applied to many other processes, including
equalisation and synchronisation.
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