
1

16.548 Notes II
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Module Contents

• Conditional Entropy
• Mutual Information and Information Gain 

(loss)
– Introduction to Information theory and 

communication
• Shannon’s Channel Coding Theorem 
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Comment

• Information theory discussed today applies 
to applications of data mining, data 
compression, and communication
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Specific Conditional Entropy H(Y|X=v)
Suppose I’m trying to predict output Y and I have input X

Let’s assume this reflects the true 
probabilities

E.G. From this data we estimate

• P(LikeG = Yes) = 0.5

• P(Major = Math & LikeG = No) = 0.25

• P(Major = Math) = 0.5

• P(LikeG = Yes | Major = History) = 0

Note:

• H(X) = 1.5

•H(Y) = 1

X = College Major

Y = Likes “Gladiator”

YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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Definition of Specific Conditional 
Entropy:

H(Y |X=v) = The entropy of Y
among only those records in which 
X has value v

X = College Major

Y = Likes “Gladiator”

YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX

Specific Conditional Entropy H(Y|X=v)
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Definition of Specific Conditional 
Entropy:

H(Y |X=v) = The entropy of Y
among only those records in which 
X has value v

Example:

• H(Y|X=Math) = 1

• H(Y|X=History) = 0

• H(Y|X=CS) = 0

X = College Major

Y = Likes “Gladiator”

YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX

Specific Conditional Entropy H(Y|X=v)
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Definition: Conditional Entropy
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Conditional Entropy H(Y|X)

Definition of Conditional 
Entropy:

H(Y |X) = The average specific 
conditional entropy of Y

= if you choose a record at random what 
will be the conditional entropy of Y, 
conditioned on that row’s value of X

= Expected number of bits to transmit Y if 
both sides will know the value of X

= Σj Prob(X=vj) H(Y | X = vj)

X = College Major

Y = Likes “Gladiator”

YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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Conditional Entropy
Definition of Conditional Entropy:

H(Y|X) = The average conditional 
entropy of Y

= ΣjProb(X=vj) H(Y | X = vj)

X = College Major

Y = Likes “Gladiator”

Example:

00.25CS
00.25History
10.5Math
H(Y | X = vj)Prob(X=vj)vj

H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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Information Gain (loss) (aka Mutual 
Information)

Definition of Information Gain:

IG(Y|X) = I must transmit Y. 
How many bits on average 
would it save me if both ends of 
the line knew X?

IG(Y|X) = H(Y) - H(Y | X)

X = College Major

Y = Likes “Gladiator”

Example:

• H(Y) = 1

• H(Y|X) = 0.5

• Thus IG(Y|X) = 1 – 0.5 = 0.5
YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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Information Gain Example
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Another example
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Relative Information Gain
Definition of Relative Information 
Gain:

RIG(Y|X) = I must transmit Y, what 
fraction of the bits on average would 
it save me if both ends of the line 
knew X?

RIG(Y|X) =( H(Y) - H(Y | X) )/ H(Y)

X = College Major

Y = Likes “Gladiator”

Example:

• H(Y|X) = 0.5

• H(Y) = 1

• Thus IG(Y|X) = (1 – 0.5)/1 = 0.5YesMath
NoHistory
YesCS
NoMath
NoMath
YesCS
NoHistory
YesMath

YX
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What is Information Gain used for?
Suppose you are trying to predict whether someone 
is going live past 80 years. From historical data you 
might find…

•IG(LongLife | HairColor) = 0.01

•IG(LongLife | Smoker) = 0.2

•IG(LongLife | Gender) = 0.25

•IG(LongLife | LastDigitOfSSN) = 0.00001

IG tells you how interesting a 2-d contingency table is 
going to be.
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Searching for High Info Gains
• Given something (e.g. wealth) you are trying to 

predict, it is easy to ask the computer to find 
which attribute has highest information gain for it.
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What Else is Conditional Entropy 
Used For

• It is used as a measure of uncertainty 
(noise) introduced by the channel

• To be derived over next few minutes
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Joint Information or Dependency
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Information Theory Applied to 
Communication
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Key Slide: Definition of Mutual Information
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Hard decision vs Soft Decision
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Applications of Information 
Theory: Compression
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Shannon’s First Theorem: A.K.A Source 
Coding Theorem, A.K.A Compression Theorem
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Shannon’s source coding theorem
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Rate of a Source Code
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2nd order Block Codes and 
Huffman Encoding



50



51



52



53



54



55

Some Definitions
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Higher Order Codes Converge 
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