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16.548 
Coding, Information Theory (and 

Advanced Modulation)

Prof. Jay Weitzen
Ball 411

Jay_weitzen@uml.edu
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Notes Coverage

• Course Introduction
• Definition of Information and Entropy
• Review of Conditional Probability
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Class Coverage

• Fundamentals of Information Theory (4 
weeks)

• Block Coding (3 weeks)
• Advanced Coding and modulation as a way 

of achieving the Shannon Capacity bound: 
Convolutional coding, trellis modulation, 
and turbo modulation, space time coding (7 
weeks)
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Course Web Site

• http://faculty.uml.edu/jweitzen/16.548
– Class notes, assignments, other materials on 

web site
– Please check at least twice per week
– Lectures will be streamed, see course website
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Prerequisites (What you need to 
know to thrive in this class)

• 16.363 or 16.584 (A Probability class)
• Some Programming (C, VB, Matlab)
• Digital Communication Theory
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Grading Policy
• 4 Mini-Projects (25% each project)

•Lempel ziv compressor

• Cyclic Redundancy Check

• Convolutional Coder/Decoder soft 
decision

• Trellis Modulator/Demodulator
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Course Information and Text 
Books

• Coding and Information Theory by Wells, 
plus his notes from University of Idaho

• Digital Communication by Sklar, or Proakis
Book

• Shannon’s original Paper (1948)
• Other material on Web site
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Claude Shannon Founds Science 
of Information theory in 1948

In his 1948 paper, ``A Mathematical Theory of 
Communication,'' Claude E. Shannon formulated 
the theory of data compression. Shannon 
established that there is a fundamental limit to 
lossless data compression. This limit, called the 
entropy rate, is denoted by H. The exact value of 
H depends on the information source --- more 
specifically, the statistical nature of the source. It 
is possible to compress the source, in a lossless 
manner, with compression rate close to H. It is 
mathematically impossible to do better than H. 
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This is 
Important
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Source Modeling
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Zero order models

It has been said, that if you get enough monkeys, and sit them down at enough 
typewriters, eventually they will complete the works of Shakespeare
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First Order Model
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Higher Order Models
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Zero’th Order Model
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Definition of Entropy

Shannon used the ideas of randomness and entropy from the 
study of thermodynamics to estimate the randomness (e.g. 
information content or entropy) of a process

Entropy is a measure of predictability or randomness
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Entropy in a nut-shell

Low Entropy High Entropy
..the values (locations of 
soup) unpredictable... 
almost uniformly sampled 
throughout our dining room

..the values (locations 
of soup) sampled 
entirely from within 
the soup bowl
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Absolute 
certainty 
implies 0 

information
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Randomness has 
high information 

content



27

Quick Review: Working with 
Logarithms
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Entropy of English Alphabet
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Kind of 
Intuitive, 

but hard to 
prove
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Information 
content is 

bounded by 
certainty (0) 

and uncertainty
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Bounds on Entropy
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Math 495 Micro-Teaching

Quick Review:
JOINT DENSITY OF

RANDOM VARIABLES

David Sherman
Bedrock, USA
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In this presentation, we’ll discuss the 
joint density of two random variables.  
This is a mathematical tool for 
representing the interdependence of 
two events. 

First, we need some random 
variables.

Lots of those in Bedrock.
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Let X be the number of days Fred 
Flintstone is late to work in a given 
week.  Then X is a random variable; 
here is its density function:

Amazingly, another resident of Bedrock is late with 
exactly the same distribution.  It’s...

Fred’s boss, Mr. Slate!

N 1 2 3
F(N) .5 .3 .2
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N 1 2 3
F(N) .5 .3 .2

Remember this means that 
P(X=3) = .2.

Let Y be the number of days when Slate is late.  Suppose we 
want to record BOTH X and Y for a given week.  How likely 
are different pairs?

We’re talking about the joint density of X and Y, and we record 
this information as a function of two variables, like this:

1 2 3
1 .35 .1 .05
2 .15 .1 .05
3 0 .1 .1

This means that

P(X=3 and Y=2) = .05.

We label it f(3,2).
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N 1 2 3
F(N) .5 .3 .2

1 2 3
1 .35 .1 .05
2 .15 .1 .05
3 0 .1 .1

The first observation to make is that 
this joint probability function 
contains all the information from 
the density functions for X and Y 
(which are the same here).

For example, to recover P(X=3), we 
can add f(3,1)+f(3,2)+f(3,3).

.2
The individual probability functions 
recovered in this way are called 
marginal.  

Another observation here is that Slate is never late three days in 
a week when Fred is only late once.
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N 1 2 3
F(N) .5 .3 .2

Since he rides to work with Fred (at least until the directing career 
works out), Barney Rubble is late to work with the same probability 
function too.  What do you think the joint probability function for 
Fred and Barney looks like?

1 2 3
1 .5 0 0
2 0 .3 0
3 0 0 .2

It’s diagonal!

This should make sense, since in any 
week Fred and Barney are late the 
same number of days.

This is, in some sense, a maximum 
amount of interaction: if you know 
one, you know the other. P(Barney
late |Fred late)= 1
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N 1 2 3
F(N) .5 .3 .2
A little-known fact: there is 
actually another famous person 
who is late to work like this. SPOCK!

Before you try to guess what the joint density function for Fred
and Spock is, remember that Spock lives millions of miles (and 
years) from Fred, so we wouldn’t expect these variables to 
influence each other at all.

(Pretty embarrassing for a Vulcan.)

In fact, they’re independent….
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N 1 2 3
F(N) .5 .3 .2

1 2 3
1 .25 .15 .1
2 .15 .09 .06
3 .1 .06 .04

Since we know the variables X 
and Z (for Spock) are 
independent, we can calculate 
each of the joint probabilities 
by multiplying.

For example, f(2,3) = P(X=2 and Z=3)

= P(X=2)P(Z=3) = (.3)(.2) = .06.

This represents a minimal amount of 
interaction. P(spock|fred)=P(spock)
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Dependence of two events means that knowledge of one gives 
information about the other.

Now we’ve seen that the joint density of two variables is able to 
reveal that two events are independent (      and      ), completely 
dependent (      and      ), or somewhere in the middle (      and      ).

Later in the course we will learn ways to quantify dependence.  
Stay tuned….

YABBA DABBA DOO!
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Marginal 
Density 

Functions
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Conditional Probability

another event

)(
),()|(

BP
BAPBAP =



55

Conditional Probability (cont’d)

P(B|A)
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Definition of conditional probability
• If P(B) is not equal to zero, then the conditional probability of A 

relative to B, namely, the probability of A given B, is

P(A|B) =  
P(A  B)

P(B)
∩

P(A B) =  P(B)  P(A|B)
or
P(A B) =  P(A)  P(B|A)

∩ •

∩ •
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Conditional Probability

0.450.25 0.25

A B

P(A) = 0.25 + 0.25 = 0.50
P(B)  = 0.45 + 0.25 = 0.70
P(A’) = 1 - 0.50 =0.50
P(B’)= 1-0.70 =0.30

P(A|B) =  
P(A  B)

P(B)
∩

= =
025
070

0357
.
.

.

P(B|A) =  
P(A  B)

P(A)
∩

= =
025
050

05
.
.

.
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Some Observations:

• In previous Slides P(Fred late and Spock 
late) were independent
– Therefore P(Fred|Spock) 

=P(Fred)P(spock)/P(spock)=P(Fred)
• P(Fred late and Barney late) are totally 

dependent
– P(Fred|Barney)=1
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Law of Total Probability

If B  B ,......,  and B  are mutually exclusive events of which 
one must occur,  then for any event A                          

P(A) =  P(B  P(A|B  +  P(B

1 2 k

1 1 2

,

) ) ) ( | ) ...... ( ) ( | )⋅ ⋅ + + ⋅P A B P B P A Bk k2

P A P B P A B P B P A B( ) ( ) ( | ) ( ) ( | )' '= ⋅ + ⋅

Special case of rule of Total Probability
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Bayes Theorem
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Generalized Bayes’ theorem
If  B  B and B  are mutually exclusive events of which 
one must occur,  then

1 2 k, ,....

)/()(.......)/()()/()(
)/()()/(

2211 kk

ii
i BAPBPBAPBPBAPBP

BAPBPABP
⋅++⋅+⋅

⋅
=

k. 2,......, 1,=i for
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Urn Problems

• Applications of Bayes Theorem
• Begin to think about concepts of Maximum 

likelihood and MAP detections, which we 
will use throughout codind theory
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End of Notes 1


