Solutions Chapter 11

1. a) $z(w)=A \int^{w}\left(w-u_{1}\right)^{\left(\left(\alpha_{1} / \pi\right)-1\right)} d w+B$

Take $B=0$ and the lower limit of the integral as 0 . In this way $w=0$ has image $z=0$. The above reduces to
$z(w)=A \int_{0}^{w}(w)^{\left.\left(\alpha_{1} / \pi\right)-1\right)} d w==A w^{\alpha / \pi}$. To make $z=1$ have image $w=1$ we take $A=1$. Thus
$z(w)=w^{\alpha / \pi}$ and $w(z)=z^{\pi / \alpha}$ where the principal branches of the functions are used as the branch cuts do not extend into the domains of interest.
b) $\Phi(w)=w \Phi(w(z))=z^{\pi / \alpha}$. Thus $V=\overline{\left(\frac{d \Phi}{d z}\right)}=\frac{\pi}{\alpha} \overline{\left(z^{\pi / \alpha-1}\right)}$

Since $0<\alpha<\pi$ we have $\pi / \alpha-1>0$. With $\alpha=\pi / 4, V=4 \overline{\left(z^{3}\right)}$. Thus, the velocity in the z plane is infinite at infinity but nowhere else. It is zero in the corner where $z=0$.
c) test=1
while test <100
z=input ('z=')
vel=4*conj (z^3)
test=input ('test =') end
$z=\exp \left(i^{*} \mathrm{pi} / 5\right)$
vel $=$
$-1.2361-3.8042 i$
$\mathrm{z}=.1^{*} \exp \left(\mathrm{i}^{*} \mathrm{pi} / 8\right)$
0.0015-0.0037i
d)
clf
clear
psi=[0 . 01 . 1 1];
u=linspace ($-2,2,10^{\wedge} 7$);
for $j=1: l e n g t h(p s i)$

```
w=u+i*psi(j);
PHI=w.^(1/4);
plot(real(PHI),imag(PHI),'linewidth',2);hold on
text(.1,.12,'\psi=0')
text(.3,.2,'\psi=.01')
text(.7,.1,'\psi=.1')
text(.90,.5,'\psi=1')
end
```


e) $z(w)=A \int^{w}(w)^{\left(\left(\frac{2 \pi}{\pi}-\frac{\alpha}{\pi}\right)-1\right)} d w+B$. Take B $=0$ as in part a).Thus
$z(w)=A \int_{0}^{w}(w)^{\left(-\frac{\alpha}{\pi}+1\right)} d w=\frac{A w^{2-\alpha / \pi}}{2-\alpha / \pi}$. Now to map $w=-1$ into $z=1$ we take
$1=\frac{A(-1)^{2-\alpha / \pi}}{2-\alpha / \pi}=\frac{A(-1)^{-\alpha / \pi}}{2-\alpha / \pi}$ and so $A=(-1)^{\alpha / \pi}(2-\alpha / \pi)$. Thus $z=(-1)^{\alpha / \pi} w^{2-\alpha / \pi}$
f) With $\quad \alpha=\pi / 2$ we have $z=(-1)^{1 / 2} w^{3 / 2}$.

```
w=linspace (-2,2,100);
z=(-1)^(1/2) *W.^(3/2);
plot(z,'linewidth',2);hold on
```


$\Phi(w)=w, z=(-1)^{1 / 2} w^{3 / 2}=i\left(w^{1 / 2}\right)^{3}$, If w is negative real then z is positive real, if we take $(-1)^{1 / 2}=i$ and use the principal value of $w^{1 / 2}$. If w is positive real then $z=i(|w|)^{3 / 2}$ which is positive imaginary. Now $-z^{2}=w^{3}$ and so $w=(-1)^{1 / 3} z^{2 / 3}$. Let us take the branch cut of this function along the positive real z axis. We cannot have a branch cut in any domain lying in $\pi / 2<\arg (z)<3 \pi / 2$. MATLAB will evaluate $(-z)^{2 / 3}$ as a principal value which means that the branch cut for this function lies along the positive real z axis since this is where $-z$ is negative real.
$z^{2}=-w^{3} \quad \mathrm{w}=(-1)^{1 / 3} z^{2 / 3}$
$\Phi(z)=(-1)^{1 / 3}(z)^{2 / 3} \frac{d \Phi}{d z}=(-1)^{1 / 3} \frac{2}{3} z^{-1 / 3}=\frac{2}{3}\left(\frac{-1}{z}\right)^{1 / 3}$. If z is a positive real, we want this result to be real. Since MATLAB uses principal values, the angle in the resulting expression for $(-z)^{-1 / 3}$ will be $-2 \pi / 3$. However, any value of $(-z)^{-2 / 3}$ can be converted to another possible value by multiplying it by $e^{ \pm i 2 \pi / 3}$. Thus, we will take all values obtained for $(-z)^{-2 / 3}$ in MATLAB and
multiply them by $e^{i 2 \pi / 3}$. In this way if z is positive real then the expression for $(-z)^{-1 / 3}$ will be a negative real. If z positive real , then the velocity will be in the negative z direction. Now if z is positive imaginary the velocity should be a positive imaginary number. This is verified in the following program

```
test=1
```

while test <100
z=input ('z=')
vel=2/3*conj(((-z)^(-1/3))*exp(-i*2*pi/3))
test=input ('test =')
end
Streamlines
$\Phi(w)=w=u+i v$. The streamlines are the lines in the w plane
on which v is constant. We can map them into the
streamlines in the z plane. We will take $\mathrm{v}=.1$. 2 . 3 . 4
and . 5 for ψ and use $z=(-1)^{1 / 2} w^{3 / 2}$ for the mapping, using i for sqrt(-1).
u=linspace (-2,2,100) ;
$\mathrm{v}=\left[\begin{array}{llllll} & .1 & .2 & .3 & . & \text {. 5] ; }\end{array}\right.$
clf
for $j=1:$ length (v)
w=u+i*v(j);
z=i*(w.^(3/2))
plot(z);hold on
Psi=num2str(v(j))
text(real(z(1)),imag(z(1)), Psi)
text(1,1,'numbers are values of \psi')
end

2. The transformation $\mathrm{z}(\mathrm{w})$ is the same as in Example 1 and is $z(w)=\frac{-1}{\pi} \log \left(w+\left(w^{2}-1\right)^{1 / 2}\right)+i$ and once again we have $w=-\cosh (\pi z)$. The boundary conditions in the w plane are now different and we have on the line $\mathrm{v}=0,-\infty<u<1, \phi=0$ and for $u>1$ that $\phi(u, 0)=1$. We again find $\phi(u, v)=\frac{v}{\pi} \int_{1}^{\infty} \frac{d u^{\prime}}{\left(u^{\prime}-u\right)^{2}+v^{2}}$ which we evaluate as result $=$
$\left(v^{*}\left(\operatorname{atan}((u-1) / v) / v+p i /\left(2^{*} v^{*} \operatorname{sign}(v)\right)\right)\right) / p i$
>> simplify(result)
ans $=$
$\left(\operatorname{sign}(v)^{*}\left(\operatorname{pi}+2^{*} \operatorname{atan}((u-1) / v) * \operatorname{sign}(v)\right)\right) /\left(2^{*} \mathrm{pi}\right)$
Since $v>0$ the above is
$\phi(u, v)=\frac{1}{2}+\frac{1}{\pi} \arctan \frac{u-1}{v}$

This is $\phi(u, v)=\frac{1}{2}+\frac{1}{\pi} \arctan \frac{u-1}{v}=\frac{1}{2}+\frac{1}{\pi}\left(\frac{\pi}{2}-\arctan \frac{v}{u-1}\right)=1-\frac{1}{\pi}\left(\arctan \frac{v}{u-1}\right)$
Notice that the above is the real part of the complex potential $1+\frac{i}{\pi} \log (w-1)$.
Thus, in the z plane the complex potential is $1+\frac{i}{\pi} \log (-\cosh (\pi z)-1)=\Phi(z)=\frac{i}{\pi} \log (\cosh (\pi z)+1)$

The code for generating the 2 plots is

```
x=linspace (-4,-10*eps,100);
y=linspace (10*eps,1-10*eps,100);
[X Y]=meshgrid(x,Y);
z=X+i*Y;
Phi=i/pi*log((cosh(pi*z) +1));
phi=real(Phi);
figure(1)
hold on
[c,h]=contour (X,Y,phi,[.01 . 05 . 1 . 3 . 5 . 7 .9])
clabel(c,h);colormap([00 0 0])
grid
psi=imag(Phi);
figure(2)
n=-1:30;
n=n*.2;
n=[0 n];
[p,q]=contour (X,Y,psi,n);colormap([0 0 0 0 )
clabel(p,q)
hold on
```

And the results are

Equipotentials

Streamlines
3. a) and b)
$z_{1}=i$ has image $w_{1}=-1$ and $z_{2}=0$ has image $w_{2}=0$
We have to do this integration $z(w)=A \int^{w}(w)^{1 / 2}(w+1)^{1 / 2} d w+B$.
Since the lower limit of the integral is taken as zero we can take $B=0$.
We take the lower limit of integration as 0 and put $\mathrm{B}=0$. In this way the point $w=u_{1}=0$ is mapped into $z_{1}=0$.From MATLAB we can obtain for the indefinite integral.

The following code does the above integration, employs the lower limit of integration and also shows how to get A.

```
syms w W
clf
f=@ (w) w^(1/2)* (w+1)^(1/2)
g=int(f,w)
format long
```

```
% second part uses g=I found above
I=@ (w) w^ (1/2)* (w/2 + 1/4)* (w + 1)^(1/2) - log(w +...
    w^}(1/2)*(w+1)^(1/2) + 1/2)/8
format long
    lowerlim=I(0)
%the following ensures that w=0 has image z=0
Inew=@ (w) w^ (1/2)* (w/2 + 1/4)* (w + 1)^(1/2) - log(w+...
w^(1/2)* (w+1)^(1/2) + 1/2)/8-I(0)
%the following ensures that w=-1 has image z=i
A=i/Inew (-1)
z=@(w)A* (w.^(1/2).* (w./2 + 1/4).* (w + 1).^ (1/2-log(w+...
w.^(1/2).*(w + 1).^(1/2) + 1/2)/8)-A*I(0)
%the following tests that the real axis in the w plane is
mapped onto
%the U shaped boundary in the z plane
checkone=z(-1)
check2=z(0)
w=linspace (-3, 3,100);
Z=z(w);
plot(real(Z),imag(Z),'linewidth',3); hold
```

This is the output which provides a check on our result
$A=$
-2.546479089470326
lowerlim =
0.086643397569993

c)The image of the vertical portion of the boundary in the z plane is the line segment in the w
plane $\mathrm{v}=0,-1<u<0$. This is maintained at 1 volt while the remainder of this line is at u volts. From the Poisson integral formula for the upper half plane we have that the voltage in the upper half of the w plane is given by $\phi(u, v)=\frac{v}{\pi} \int_{-1}^{0} \frac{d u^{\prime}}{\left(u^{\prime}-u\right)^{2}+v^{2}}$

From MATLAB

```
syms up u v
assume(u,'real')
assume(v,'real')
f=1./((up-u)^2+v.^2);
result=int(f,up,[-1 0]);
result=v/pi*result;
pretty (result)
the output is
    / u \ / u + 1 \
    atan| - | - atan| ----- |
_ -_------------------------
```

pi

```
Which is the same as
\frac{1}{\pi}(\operatorname{arctan}(v/u)-\operatorname{arctan}(v/(u+1))=\frac{1}{\pi}\operatorname{arctan}\frac{(v/u-v/(u+1))}{1+\frac{\mp@subsup{v}{}{2}}{u(u+1)}}=\frac{1}{\pi}\operatorname{arctan}\frac{v}{\mp@subsup{u}{}{2}+u+\mp@subsup{v}{}{2}}.
```

Suppose we want the locus of a voltage V. Then we have
$\tan (\pi V)=K=\frac{v}{u^{2}+u+v^{2}}$ which is the equation of circles. We can
rewrite this as $(u+1 / 2)^{2}+(v-1 /(2 k))^{2}=\frac{1}{4}\left(1+\left(\frac{1}{k}\right)^{2}\right)$. As a check can take
$\mathrm{V}=1 / 2$. Then $k=\infty$. The circle has center at $u=-1 / 2, v=0$ and radius
$1 / 2$. Notice that in general all circles are centered at $u=-1 / 2$
$v=1 /(2 k)$ where $k=\tan (\pi V)$. We can plot these circles using this code
$\mathrm{V}=$ input('V=')
syms w
while V<1
clf
k=tan (pi*V);
alpha=asin(1/($\left.\left.\operatorname{sqrt}\left(k^{\wedge} 2+1\right)\right)\right)$
psi=linspace(-alpha,pi+alpha,100);
$r=(1 / 2)$ *sqrt $\left(1+1 / k^{\wedge} 2\right)$;
$\mathrm{w}=-1 / 2+\mathrm{i} /(2 * \mathrm{k})+\mathrm{r}^{*} \exp (\mathrm{i} * \mathrm{psi})$;
plot(w);hold on; grid
$\mathrm{V}=$ input ($\mathrm{V}=\mathrm{V}$)
end
Using the transformation found in parts a and b we can map any
of the equipotentials found in the preceding code into the z
plane from the w plane
c)
$\mathrm{V}=1: 4$;
$\mathrm{V}=2 * \mathrm{~V} / 10$;
\%following is from preceding part of problem
$A=-2.546479089470326$;
lowerlim $=0.086643397569993$;
clf
for $j=1: l e n g t h(V)$

```
    Vo=V(j);
    voltlabel=num2str(V(j));
k=tan(pi*Vo);
alpha=asin(1/(sqrt(k^2+1)));
psi=linspace(-alpha,pi+alpha,1000);
r=(1/2)*sqrt(1+1/k^2);
w=-1/2+i/(2*k)+r*exp(i*psi);
wlabel=-1/2+i/(2*k) +r*exp(i*pi/2);
xlabel('u'); ylabel('v');
RR=imag (w)>0;
w=w. *RR;
figure(1)
plot(w);hold on; axis equal
text(real(wlabel),imag(wlabel),voltlabel)
text(-.5,.01,'1 volt')
format long
I=@(w) w^(1/2)*(w/2 + 1/4)*(w + 1)^(1/2) - log(w +
w^(1/2)*(w + 1)^(1/2) + 1/2)/8;
z=@(w)A*(w.^(1/2).*(w./2 + 1/4).*(w + 1).^(1/2) - log(w+
w.^(1/2).*(w + 1).^(1/2) + 1/2)/8)-A*lowerlim;
    Z=z(w);
```


d) From part c) we have

$\phi(u, v)=\frac{1}{\pi}(\arctan (v / u)-\arctan (v /(u+1))$
Thus the potential is the real part of the complex potential
$\Phi(w)=\frac{-i}{\pi}[\log w-\log (w+1)]=\phi(u, v)+i \psi(u, v)$. The stream function is the imaginary part:
$\psi(w)=\frac{1}{\pi}[\log |(w+1)|-\log |w|]=\frac{1}{\pi}\left[\log \left|\frac{(w+1)}{w}\right|\right]$
Thus $e^{\pi \psi}=k=\left|\frac{(w+1)}{(w)}\right|$ describes the streamlines.
Since ψ is real it follows that $k \geq 0$ is real. With $w=u+i v$ the preceding becomes
$\left(u-\frac{1}{k^{2}-1}\right)^{2}+v^{2}=\frac{k^{2}}{\left(k^{2}-1\right)^{2}}$. Circles of radius $k /\left|\left(k^{2}-1\right)\right|$ center at $\mathrm{v}=0, \frac{1}{k^{2}-1}$.
clear
psi=[.1 . 2 . $4-.1$-. $2-.4]$
\%following is from preceding part of problem $A=-2.546479089470326$;
lowerlim $=0.086643397569993 ;$
clf
for $j=1: l e n g t h(p s i)$
PSI=psi(j);
psilabel=num2str(PSI);
$k=\exp (p i * P S I) ;$
theta=linspace (0,pi,1000);
$r=\operatorname{abs}(k) / a b s\left(k^{\wedge} 2-1\right) ;$
$\mathrm{w}=1 /\left(\mathrm{k}^{\wedge} 2-1\right)+\mathrm{r}^{*} \exp \left(\mathrm{i}^{*}\right.$ theta) ;
xlabel('u'); ylabel('v');
RR=imag (w) >0;
figure (1);hold on
plot(w); axis equal
val_psi=num2str (PSI) ;
text(1/(k^2-1), r,val_psi);
format long

```
I=@(w) w^(1/2)*(w/2 + 1/4)*(w + 1)^(1/2) - log(w +
w^(1/2)*(w + 1)^(1/2) + 1/2)/8;
    z=@(w)A*(w.^(1/2).*(w./2 + 1/4).*(w + 1).^(1/2) - log(w+
w.^(1/2).*(w + 1).^(1/2) + 1/2)/8)-A*lowerlim;
    Z=z(w);
Z_for_label=z((1/k^2-1)+i*r)
figure(2);hold
plot(Z,'linewidth',1); hold ;
text(real(Z(500)),imag(Z(500)),val_psi)
end
figure(1);grid; hold on
figure(2);grid
```


Streamlines in the z plane

Note the negative signs in front of numbers in upper half plane of z plane. They are hard to see.
4.
clear
\%solution for parts a and b
$x=1$ inspace $(-1,-.01,50)$;
clf
for $j=1:$ length (x)
$z(j)=x(j)+.9999 * i \quad ;$
syms w
warning('off')
$\mathrm{w}=\mathrm{solve}(1 . / \mathrm{pi} *(\mathrm{w}+\log (\mathrm{w})+1)==\mathrm{z}(j))$;

```
E field(j)=-i*w/(abs(w^2)+w);
result=[z(j), -E_field(j)];
hold on
end
figure(1)
plot(x,imag(-E_field)); hold on
xlabel('x');
ylabel('charge_density on inside of upper plate divided by 8.85*(10^-12)')
clear
%
x=linspace(-1,-.01,50);
for j=1:length(x)
    z(j)=x(j)+1.0001*i ;
syms w
warning('off')
w=solve(1./pi*(w+log(w)+1) ==z(j));
E_field(j)=-i*w/(abs(w^2)+w);
hold on
end
figure(1)
plot(x,imag(E_field),'r'); hold on
xlabel('x');
ylabel('charge_density plates divided by 8.85*(10^-12)')
```


5.
a) $z=-\left(w^{2}-1\right)^{-1 / 2}=-(w-1)^{-1 / 2}(w+1)^{-1 / 2}$. Take note of the branches and their cuts

Suppose w is real and >1. Then the above expression is negative real and satisfies $-\infty<z<0-$. Suppose w is real and <-1. Then the above expression is positive real and satisfies $0+<z<\infty$. If w is real and $-1<w<1$ then this expression is positive imaginary and satisfies $1<\operatorname{Im} w<\infty$
b) The image of the positive imaginary axis in the w plane is the line segment $v=0,-1<u<1$, which is maintained at 1 volt. The remainder of that segment is maintained at 0 volts. This is the boundary condition to be satisfied by the $\phi=\operatorname{Re} \Phi(w)$. Using the
Poisson integral formula for the upper half plane we see that $\phi(u, v)=\frac{v}{\pi} \int_{-1}^{1} \frac{d u^{\prime}}{\left(u^{\prime}-u\right)^{2}+v^{2}}$.
This was evaluated in Example 1 and found to be
$\phi(u, v)=\frac{\arctan (v /(u-1))-\arctan (v /(u+1))}{\pi}$
From this we found the corresponding complex potential in the w plane to be $\Phi(w)=\frac{-i}{\pi}[\log (w-1)-\log (w+1)] \quad w=u+i v$. The imaginary part of this expression is the
stream function and given by $\psi(w)=\frac{1}{\pi}\left[\log \left|\frac{w+1}{w-1}\right|\right] \quad w=u+i v$

Solving $z=-(w-1)^{-1 / 2}(w+1)^{-1 / 2}$ for w we have $w=\frac{\left(1+z^{2}\right)^{1 / 2}}{z}$. Notice that if z is positive and greater than 1 that MATLAB would evaluate w as positive real. We want w to be negative real. Thus, we take in our code $w=-\frac{\left(1+z^{2}\right)^{1 / 2}}{z}$ Thus, in the z plane the stream function is
$\psi(z)=\frac{1}{\pi}\left[\log \left|\frac{-\left(1+z^{2}\right)^{1 / 2}+z}{-\left(1+z^{2}\right)^{1 / 2}-z}\right|\right]=\frac{1}{\pi}\left[\log \left|\frac{-\left(1+z^{2}\right)^{1 / 2}+z}{\left(1+z^{2}\right)^{1 / 2}+z}\right|\right]$

The following code will generate the streamlines, using contour

```
x=linspace (-5,5,500);
clf
y=linspace (0,3,10000);
[X Y]=meshgrid(x,Y);
z=X+i*Y;
z1=-sqrt(z.^2+1);
z2=(z1+z)./(z1-z);
z2=abs(z2);
psi=1/pi*log(z2);
[ch]=contour(X,Y,psi,[.25 .5 . 75 1 0 -. 25 -. 5 -. 75 -1]);
colormap([0 0 0])
xlabel('x');ylabel('y')
clabel(c,h)
hold on
%the following generates the boundary including the barrier
y=linspace (1,3,100);
xx=eps*y;
%the following plots the barrier interrupting the flow.
    plot(xx,y,'linewidth',4)
hold on
yy=0*x;
plot(x,Yy,'linewidth',3);
```

The output is

Some arrows were used to show direction of the streamlines.
c) The complex electrostatic potential in the w plane is
$\Phi(w)=\frac{-i}{\pi}[\log (w-1)-\log (w+1)] \quad w=u+i v$
The electric field vector in the z plane is given by
$E=-\overline{\left(\frac{d \Phi}{d z}\right)}=\overline{-\frac{d \Phi}{d w} \frac{d w}{d z}}=\frac{-i}{\pi} \overline{\left[\frac{1}{w-1}-\frac{1}{w+1}\right]} \overline{\frac{d}{d z} \frac{\left(1+z^{2}\right)^{1 / 2}}{z}}=\frac{-i}{\pi} \overline{\left[\frac{1}{w-1}-\frac{1}{w+1}\right]\left[\frac{-1}{z^{2}}\left(1+z^{2}\right)^{1 / 2}+\left(1+z^{2}\right)^{-1 / 2}\right]}=$
$\frac{i}{\pi} \overline{\left[\frac{2}{w^{2}-1}\right]\left[\frac{1}{z^{2}\left(1+z^{2}\right)^{1 / 2}}\right]}=\frac{i}{\pi} 2 \overline{\left[\frac{1}{\left(1+z^{2}\right)^{1 / 2}}\right]}$
As noted above, in MATLAB code we must take $\left(1+z^{2}\right)^{1 / 2}=-\left(1+z^{2}\right)^{1 / 2}$.
Code for electric field

$$
\mathrm{k}=1 \text {; }
$$

while (k>0)

$$
x=i n p u t(' x=')
$$

$$
y=i n p u t(' y=')
$$

$$
z=x+i * y
$$

$$
E=-i * 2 / p i * \operatorname{conj}\left(1 /\left(1+z^{\wedge} 2\right)^{\wedge}(1 / 2)\right)
$$

$$
\mathrm{k}=\text { input }\left(\mathrm{l} \mathrm{k}={ }^{\prime}\right)
$$

end

```
At x=1, y=1 the electric field is
0.2238 - 0.3622i
Note that the field is directed downward and to the right.
At }x=0,y=0+ the field is -2/pi =-.6366 and is directed
downward.
6.
a) and b)
```

Moving from left to right along the boundary we encounter these angles (in the limit) $\alpha_{1}=3 \pi / 4, \alpha_{2}=2 \pi, \alpha_{3}=\pi / 4$. Thus our transformation from Eq.(11.1) becomes
$z(w)=A \int^{w}(w+1)^{-1 / 4}(w-u)(w-1)^{-3 / 4} d w+B$
Taking the lower limit for the integration as -1 we see that taking $B=0$ ensures that $w=-1$ is mapped into $z=0-$

```
Now we want w=1 to be mapped into z=0+. Thus we require
z ( w ) = \int _ { - 1 } ^ { 1 } ( w + 1 ) ^ { - 1 / 4 } ( w - u ) ( w - 1 ) ^ { - 3 / 4 } d w = 0 . \text { We can determine the value of u with this code:}
clear
syms w W
    syms w
    u=linspace (.01,.99,100);
    for j=1:length(u)
my_integral(j)=integral(@(w)(((w+1).^(-1/4)).*(w-u(j)).*((w-1).^(-3/4))),-
1,1);
    end
    plot(u,abs(my integral));grid
```

whose output is below and which shows that $u=1 / 2$.

c)

Finding A
clear
\%Finding A
syms w W
syms w
up=1/2;
clear
syms w
clf
up=1/2;
format long
A=exp(i*pi/4)/integral(@(w) (($w+1$).^(-1/4)).*(w-up).*((w-1).^(-3/4))),-1,.5)

The output is

$A=0.877382647087441-0.000000000000000 i$

d)
clear;clf
syms w
u=linspace (-2,2,6000);
W=u+.001*i;
$\mathrm{A}=0.877382647087441$;
for $j=1: l e n g t h(W)$;
my_integral(j)=A*integral(@(w) (($w+1$).^(-1/4)).*(w-
.5).* ((w-1).^(-3/4))),-1,W(j));
end
z=my_integral;
plot(real(z),imag(z))

The output is

c) $\Phi(w)=A w$ so that
$\frac{d \Phi}{d z}=\frac{d \Phi}{d w} \frac{d w}{d z}=1 /(d z / d w)=\frac{A}{A}(w+1)^{1 / 4}(w-1)^{3 / 4}(w-1 / 2)^{-1}=(w+1)^{1 / 4}(w-1)^{3 / 4}(w-1 / 2)^{-1}$

Note that as $w \rightarrow \infty$ this tends asymptotically to 1 using principal branches. Thus the velocity at infinity in the z plane is one.

```
d)
clear;clf
syms w
u=linspace (-2,2,6000);
v=[ . 02 . 2 . 5];
for k=1:length(v)
    W=u+v(k)*i;
    A=0.877382647087441;
    for j=1:length(u);
my_integral(j)=A*integral(@(w) (((w+1).^(-1/4)).*(w-
.5).* ((w-1).^(-3/4))),-1,W(j));
    end
z=my_integral;
plot(real(z),imag(z));hold on
end
x=linspace(0,1/sqrt(2));
y=x;
plot(x,y,'linewidth',2)
e)
u=linspace(-2,2,6000);
clf
psi=[.05 .1 . 2 . 5];
    A=0.877382647087441;
    for k=1:length(psi)
    for j=1:length(u)
        W=u(j)+psi(k)*i;
    my_integral(j)=integral(@(w) (((w+1).^(-1/4)).*(w-.5).*((w-
1).^`(-3/4))),-1,W) ;
    end
    z=my_integral;
    plot(real(z),imag(z)); hold on
    PSI=num2str(psi(k));
    L=length(u -10);
    text(real(z(L)),imag(z(L)),PSI)
    end
    grid
```


