
Solutions Chapter 11 

1. a)  

Take B=0 and the lower limit of the integral as 0. In this way w=0 has image z=0. The above 
reduces to  

. To make z=1 have image w=1 we take A=1. Thus  

 and  where the principal branches of the functions are used as the 
branch cuts do not extend into the domains of interest.   

b) . Thus    

Since we have . With . Thus, the velocity in the z 

plane is infinite at infinity but nowhere else. It is zero in the corner where . 

c) test=1 
while test <100 
  
z=input('z=') 
vel=4*conj(z^3) 
test=input ('test =') 
end 
 
z=exp(i*pi/5) 

 

vel = 

 

  -1.2361 - 3.8042i 

z=.1*exp(i*pi/8) 

0.0015 - 0.0037i 

d) 

clf 
clear 
psi=[ 0 .01 .1 1 ]; 
u=linspace(-2,2,10^7); 
for j=1:length(psi) 
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    w=u+i*psi(j); 
    PHI=w.^(1/4); 
    plot(real(PHI),imag(PHI),'linewidth',2);hold on 
    text(.1,.12,'\psi=0') 
    text(.3,.2,'\psi=.01') 
    text(.7,.1,'\psi=.1') 
    text(.90,.5,'\psi=1') 
   end 
     

  
 

e) . Take B =0 as in part a).Thus 

. Now to map  into we take 

and so . Thus  

 

 

f) With we have . 
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w=linspace(-2,2,100); 
z=(-1)^(1/2) *w.^(3/2); 
plot(z,'linewidth',2);hold on 
 

 

, , If w is negative real then z is positive real, if we take 

and use the principal value of . If w is positive real then which is 

positive imaginary. Now and so . Let us take the branch cut of this 
function along the positive real z axis. We cannot have a branch cut in any domain lying in 

. MATLAB will evaluate as a principal value which means that the 
branch cut for this function lies along the positive real z axis since this is where -z is negative 
real.  

 

. If z is a positive real, we want this result to 

be real. Since MATLAB uses principal values, the angle in the resulting expression for 

will be  . However, any value of  can be converted to another possible value by 

multiplying it by . Thus, we will take all values obtained for  in MATLAB and 

( )w wF = ( )31/2 3/2 1/2( 1)z w i w= - =
1/2( 1) i- = 1/2w 3/2( )z i w=

2 3z w- = 1/3 2/3( 1)w z= -

/ 2 arg( ) 3 / 2zp p< < 2/3( )z-

2 3 1/3 2/3   w ( 1)z w z= - = -

1/3 2/3( ) ( 1) ( )   z zF = -
1/3

1/3 1/32 2 1( 1)
3 3

d z
dz z

-F -æ ö= - = ç ÷
è ø

1/3( )z --
2 / 3p- 2/3( )z --

2 /3ie p± 2/3( )z --



multiply them by . In this way if z is positive real then the expression for will be a 
negative real. If z positive real , then the velocity will be in the negative z direction. Now  if z is 
positive imaginary the velocity should be a positive imaginary number. This is verified in the 
following program  

test=1 
while test <100 
  
z=input('z=') 
vel=2/3*conj(((-z)^(-1/3))*exp(-i*2*pi/3)) 
test=input ('test =') 
end 
 
Streamlines 

. The streamlines are the lines in the w plane 
on which v is constant. We can map them into the 
streamlines in the z plane . We will take v= .1 .2 .3 .4 
and .5  for  and use  for the mapping , using i for sqrt(-1). 
u=linspace(-2,2,100); 
v=[0 .1 .2 .3 .4 .5]; 
clf 
for j=1:length (v) 
    w=u+i*v(j); 
     
    z=i*(w.^(3/2)) 
    plot(z);hold on 
    Psi=num2str(v(j)) 
    text(real(z(1)),imag(z(1)),Psi) 
    text(1,1,'numbers are values of \psi') 
end 
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          2. The transformation z(w) is the same as in Example 1 and is 

and once again we have . The boundary conditions in the w plane are now 
different and we have on the line v=0,  and . We again 

find which we evaluate as  

result = 

  

(v*(atan((u - 1)/v)/v + pi/(2*v*sign(v))))/pi 

  

>> simplify(result) 

 ans = 

 (sign(v)*(pi + 2*atan((u - 1)/v)*sign(v)))/(2*pi) 

Since v>0 the above is  
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This is  

Notice that the above is the real part of the complex potential . 

Thus, in the z plane the complex potential is  

 

The code for generating the 2 plots is  

x=linspace(-4,-10*eps,100); 
y=linspace (10*eps,1-10*eps,100); 
[X Y]=meshgrid(x,y); 
z=X+i*Y; 
Phi=i/pi*log((cosh(pi*z)+1)); 
phi=real(Phi); 
figure(1) 
hold on 
[c,h]=contour (X,Y,phi,[.01 .05 .1 .3 .5 .7 .9]) 
clabel(c,h);colormap([0 0 0]) 
grid 
psi=imag(Phi); 
figure(2) 
n=-1:30; 
n=n*.2; 
n=[0 n]; 
[p,q]=contour (X,Y,psi,n);colormap([0 0 0]) 
clabel(p,q) 
hold on 
 
And the results are  
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                                                             Equipotentials 



 

                                                                           Streamlines 

 

3. a) and b) 

has image and has image  

We have to do this integration .  

Since the lower limit of the integral is taken as zero we can take B=0.  

We take the lower limit of integration as 0 and put B=0. In this way the point  is 

mapped into .From MATLAB we can obtain for the indefinite integral. 

The following code does the above integration , employs the lower limit of integration and also 
shows how to get A. 

syms w W 
clf 
f=@(w)w^(1/2)*(w+1)^(1/2) 
g=int(f,w) 
format long 
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% second part uses g=I found above 
I=@(w)w^(1/2)*(w/2 + 1/4)*(w + 1)^(1/2)- log(w +… 
 w^(1/2)*(w + 1)^(1/2) + 1/2)/8 
format long 
 lowerlim=I(0) 
  
%the following ensures that w=0 has image z=0 
Inew=@(w)w^(1/2)*(w/2 + 1/4)*(w + 1)^(1/2) - log(w+… 
w^(1/2)*(w + 1)^(1/2) + 1/2)/8-I(0) 
  
%the following ensures that w=-1 has image z=i 
A=i/Inew(-1) 
z=@(w)A*(w.^(1/2).*(w./2 + 1/4).*(w + 1).^(1/2-log(w+… 
w.^(1/2).*(w + 1).^(1/2) + 1/2)/8)-A*I(0) 
  
%the following tests that the real axis in the w plane is 
mapped onto  
%the U shaped boundary in the z plane  
checkone=z(-1) 
check2=z(0) 
w=linspace(-3,3,100); 
Z=z(w);  
plot(real(Z),imag(Z),'linewidth',3); hold  
 

__ 
 
This is the output which provides a check on our result 

A = 

 

  -2.546479089470326 

lowerlim = 

 

   0.086643397569993 



 

c)The image of the vertical portion of the boundary in the z plane is the line segment in the w  

plane v=0, . This is maintained at 1 volt while the remainder of this line is at u volts. 
From the Poisson integral formula for the upper half plane we have that the voltage in the upper 

half of the w plane is given by  

From MATLAB 

syms up u v 
assume(u,'real') 
assume(v,'real') 
f=1./((up-u)^2+v.^2); 
result=int(f,up,[-1  0]); 
result=v/pi*result; 
pretty (result) 
 
the output is  
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Which is the same as  

. 

 
Suppose we want the locus of a voltage V. Then we have 

which is the equation of circles. We can 

rewrite this as . As a check can take  

V=1/2. Then . The circle has center at and radius 
 Notice that in general all circles are centered at   

where . We can plot these circles using this code 
 
V=input('V=') 
  
syms w 
while V<1 
    clf 
    
k=tan(pi*V); 
alpha=asin(1/( sqrt(k^2+1))) 
  
  
psi=linspace(-alpha,pi+alpha,100); 
r=(1/2)*sqrt(1+1/k^2); 
w=-1/2+i/(2*k)+r*exp(i*psi); 
plot(w);hold on;grid 
V=input('V=') 
  
end 
Using the transformation found in parts a and b we can map any 
of the equipotentials found in the preceding code into the z 
plane from the w plane 
c) 
V=1:4; 
V=2*V/10; 
%following is from preceding part of problem 
 A= -2.546479089470326; 
 lowerlim = 0.086643397569993; 
clf 
for j=1:length(V) 
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   Vo=V(j); 
   voltlabel=num2str(V(j)); 
k=tan(pi*Vo); 
alpha=asin(1/(sqrt(k^2+1))); 
psi=linspace(-alpha,pi+alpha,1000); 
  
r=(1/2)*sqrt(1+1/k^2); 
  
w=-1/2+i/(2*k)+r*exp(i*psi); 
wlabel=-1/2+i/(2*k)+r*exp(i*pi/2); 
xlabel('u'); ylabel('v'); 
RR=imag (w)>0; 
w=w.*RR; 
figure(1) 
plot(w);hold on; axis equal 
text(real(wlabel),imag(wlabel),voltlabel) 
text(-.5,.01,'1 volt') 
  
  
format long 
  
I=@(w)w^(1/2)*(w/2 + 1/4)*(w + 1)^(1/2) - log(w + 
w^(1/2)*(w + 1)^(1/2) + 1/2)/8; 
  
z=@(w)A*(w.^(1/2).*(w./2 + 1/4).*(w + 1).^(1/2) - log(w+ 
w.^(1/2).*(w + 1).^(1/2) + 1/2)/8)-A*lowerlim; 
  
 Z=z(w); 



 

 
               



d) From part c) we have 

 

Thus the potential is the real part of the complex potential 

= . The stream function is the imaginary part:

 

Thus describes the streamlines.  

Since is real it follows that is real. With  the preceding becomes 

. Circles of radius center at v=0, . 

clear 
psi=[.1 .2 .4 -.1 -.2 -.4] 
%following is from preceding part of problem 
 A= -2.546479089470326; 
 lowerlim = 0.086643397569993; 
clf 
for j=1:length(psi)  
    PSI=psi(j); 
   psilabel=num2str(PSI); 
k=exp(pi*PSI); 
  
theta=linspace(0,pi,1000); 
  
r=abs(k)/abs(k^2-1); 
w=1/(k^2-1)+r*exp(i*theta); 
xlabel('u'); ylabel('v'); 
RR=imag (w)>0; 
figure(1);hold on 
plot(w); axis equal 
val_psi=num2str(PSI); 
text(1/(k^2-1),r,val_psi); 
format long 
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I=@(w)w^(1/2)*(w/2 + 1/4)*(w + 1)^(1/2) - log(w + 
w^(1/2)*(w + 1)^(1/2) + 1/2)/8; 
 z=@(w)A*(w.^(1/2).*(w./2 + 1/4).*(w + 1).^(1/2) - log(w+ 
w.^(1/2).*(w + 1).^(1/2) + 1/2)/8)-A*lowerlim; 
 Z=z(w); 
Z_for_label=z((1/k^2-1)+i*r) 
figure(2);hold  
plot(Z,'linewidth',1); hold ; 
text(real(Z(500)),imag(Z(500)),val_psi) 
end 
figure(1);grid; hold on  
figure(2);grid 
 
 
 

 
 
 
 
  
 
 

 



 

                                             Streamlines in the z plane 

 

Note the negative signs in front of numbers in upper half plane of z plane. They are hard to see. 

 

 

 

_______________________________________________________ 

4.  

clear 
%solution for parts a and b 
x=linspace(-1,-.01,50); 
clf 
for j=1:length(x) 
 z(j)=x(j)+.9999*i  ; 
syms w  
warning('off') 
  
w=solve(1./pi*(w+log(w)+1) ==z(j)); 



E_field(j)=-i*w/(abs(w^2)+w); 
result=[z(j), -E_field(j)]; 
hold on 
end 
figure(1) 
plot(x,imag(-E_field)); hold on 
xlabel('x'); 
ylabel('charge_density on inside of upper plate divided by 8.85*(10^-12)') 
clear 
%______________ 
x=linspace(-1,-.01,50); 
  
for j=1:length(x) 
 z(j)=x(j)+1.0001*i  ; 
syms w  
warning('off') 
  
w=solve(1./pi*(w+log(w)+1) ==z(j)); 
E_field(j)=-i*w/(abs(w^2)+w); 
  
hold on 
end 
figure(1) 
plot(x,imag(E_field),'r'); hold on 
xlabel('x'); 
ylabel('charge_density plates divided by 8.85*(10^-12)') 
  
 
 



 

5. 
a) . Take note of the branches and their cuts 
Suppose w is real and >1. Then the above expression is negative real and satisfies 

  . Suppose w is real and . Then the above expression is positive real and 
satisfies . If w is real and then this expression is positive imaginary 
and satisfies  
b) The image of the positive imaginary axis in the w plane is the line segment 

 , which is maintained at 1 volt. The remainder of that segment is maintained 
at 0 volts. This is the boundary condition to be satisfied by the . Using the 

Poisson integral formula for the upper half plane we see that .. 

This was evaluated in Example 1 and found to be 

 

From this we found the corresponding complex potential in the w plane to be 

. The imaginary part of this expression is the 

stream function and given by  
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Solving for w we have . Notice that if z is positive and 

greater than 1 that MATLAB would evaluate w as positive real. We want w to be negative real. Thus, 

we take in our code  Thus, in the z plane the stream function is 

 

The following code will generate the streamlines, using contour  
 

x=linspace (-5,5,500); 
clf 
y=linspace (0,3,10000); 
[X Y]=meshgrid(x,y); 
z=X+i*Y; 
z1=-sqrt(z.^2+1); 
z2=(z1+z)./(z1-z); 
z2=abs(z2); 
psi=1/pi*log(z2); 
[c h]=contour(X,Y,psi,[.25 .5 .75 1 0 -.25 -.5 -.75 -1]); 
colormap([0 0 0]) 
xlabel('x');ylabel('y') 
 
clabel(c,h) 
hold on 
%the following generates the boundary including the barrier  
y=linspace(1,3,100); 
xx=eps*y; 
%the following plots the barrier interrupting the flow. 
 plot(xx,y,'linewidth',4) 
hold on 
yy=0*x; 
plot(x,yy,'linewidth',3); 

 
The output is  
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    Some arrows were used to show direction of the streamlines.  
c) The complex electrostatic potential in the w plane is 

 

The electric field vector in the  z plane is given by  

 

As noted above, in MATLAB code we must take . 

Code for electric field 

k=1; 
while(k>0) 
x=input('x=') 
y=input('y=') 
z=x+i*y; 
E=-i*2/pi*conj(1/(1+z^2)^(1/2)) 
k=input('k=') 
end 
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At x=1, y=1 the electric field is  
0.2238 - 0.3622i 
Note that the field is directed downward and to the right.  
At x=0,y=0+ the field is -2/pi  =-.6366 and is directed 
downward.  
 
 
6.  
a) and b) 
 
Moving from left to right along the boundary we encounter these angles (in the limit)

. Thus our transformation from Eq.(11.1) becomes 

 

Taking the lower limit for the integration as -1 we see that taking B=0  ensures that w=-1 is 
mapped into z=0-.  

Now we want w=1 to be mapped into z=0+. Thus we require 

. We can determine the value of u with this code: 

clear 
syms w W 
 syms w 
 u=linspace (.01,.99,100); 
 for j=1:length(u) 
 
my_integral(j)=integral(@(w)(((w+1).^(-1/4)).*(w-u(j)).*((w-1).^(-3/4))),-
1,1); 
 end 
 plot(u,abs(my_integral));grid 
 

whose output is below and which shows that u=1/2. 
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c) 

 

Finding A 

 

clear 
%Finding A 
syms w W 
 syms w 
 up=1/2; 
 clear 
syms w 
clf 
up=1/2; 
format long 
A=exp(i*pi/4)/integral(@(w)(((w+1).^(-1/4)).*(w-up).*((w-
1).^(-3/4))),-1,.5) 
  
 
The output is  



A= 0.877382647087441 - 0.000000000000000i 

d) 

clear;clf 
syms w 
u=linspace(-2,2,6000); 
 W=u+.001*i; 
 A=0.877382647087441; 
 for j=1:length(W); 
 my_integral(j)=A*integral(@(w)(((w+1).^(-1/4)).*(w-
.5).*((w-1).^(-3/4))),-1,W(j)); 
 end 
z=my_integral; 
plot(real(z),imag(z)) 
  
  
  
The output is  

 

c) so that 
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Note that as this tends asymptotically to 1 using principal branches. Thus the velocity at 
infinity in the z plane is one.  

d) 

clear;clf 
syms w 
u=linspace(-2,2,6000); 
v=[.02 .2 .5]; 
for k=1:length(v) 
 W=u+v(k)*i; 
 A=0.877382647087441; 
 for j=1:length(u); 
my_integral(j)=A*integral(@(w)(((w+1).^(-1/4)).*(w-
.5).*((w-1).^(-3/4))),-1,W(j)); 
  
 end 
z=my_integral; 
plot(real(z),imag(z));hold on 
end 
x=linspace(0,1/sqrt(2)); 
y=x; 
plot(x,y,'linewidth',2) 
e) 
u=linspace(-2,2,6000); 
clf 
psi=[.05 .1 .2 .5]; 
  
 A=0.877382647087441; 
 for k=1:length(psi) 
 for j=1:length(u) 
     W=u(j)+psi(k)*i; 
 my_integral(j)=integral(@(w)(((w+1).^(-1/4)).*(w-.5).*((w-
1).^(-3/4))),-1,W); 
 end 
 z=my_integral; 
 plot(real(z),imag(z)); hold on  
 PSI=num2str(psi(k)); 
 L=length(u -10); 
 text(real(z(L)),imag(z(L)),PSI) 
 end 
 grid 
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