

Fundamentals of Engineering (FE) General Exam Review Program March 3rd ~ April 12th, 2010

Chemistry

David K. Ryan, Ph.D.

Department of Chemistry
University of Massachusetts Lowell

April 12, 2010

http://faculty.uml.edu/david_ryan/

Overview

- Introduction limited time, few items covered
- FE Supplied-Reference Handbook what's exciting in the Chemistry section, p 100-103
- Example FE General Exam Questions cover as many as we can
- Summary

CHEMISTRY

Avogadro's Number: The number of elementary particles in a mol of a substance.

1 mol = 1 gram mole 1 mol = 6.02×10^{23} particles

A *mol* is defined as an amount of a substance that contains as many particles as 12 grams of ¹²C (carbon 12). The elementary particles may be atoms, molecules, ions, or electrons.

ACIDS, BASES, and pH (aqueous solutions)

$$pH = log_{10} \left(\frac{1}{[H^+]} \right)$$
, where

[H⁺] = molar concentration of hydrogen ion, in gram moles per liter

Acids have pH < 7.

Bases have pH > 7.

ELECTROCHEMISTRY

Cathode – The electrode at which reduction occurs.

Anode – The electrode at which oxidation occurs.

Oxidation – The loss of electrons.

Reduction – The gaining of electrons.

Oxidizing Agent – A species that causes others to become

Equilibrium Constant of a Chemical Reaction

$$aA + bB \rightleftharpoons cC + dD$$

$$K_{\text{eq}} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Le Chatelier's Principle for Chemical Equilibrium – When a stress (such as a change in concentration, pressure, or temperature) is applied to a system in equilibrium, the equilibrium shifts in such a way that tends to relieve the stress.

Heats of Reaction, Solution, Formation, and Combustion – Chemical processes generally involve the absorption or evolution of heat. In an endothermic process, heat is absorbed (enthalpy change is positive). In an exothermic process, heat is evolved (enthalpy change is negative).

Solubility Product of a slightly soluble substance AB:

$$A_m B_n \rightarrow m A^{n+} + n B^{m-}$$

Solubility Product Constant = $K_{SP} = [A^+]^m [B^-]^n$

Metallic Elements – In general, metallic elements are distinguished from nonmetallic elements by their luster, malleability, conductivity, and usual ability to form positive ions.

Nonmetallic Elements – In general, nonmetallic elements are not malleable, have low electrical conductivity, and rarely

Avogadro's Number: The number of elementary particles in a mol of a substance.

1 mol = 1 gram mole 1 mol = 6.02×10^{23} particles

A *mol* is defined as an amount of a substance that contains as many particles as 12 grams of ¹²C (carbon 12). The elementary particles may be atoms, molecules, ions, or electrons.

ACIDS, BASES, and pH (aqueous solutions)

$$pH = log_{10} \left(\frac{1}{[H^+]} \right)$$
, where

[H⁺] = molar concentration of hydrogen ion, in gram moles per liter

Acids have pH < 7.

Bases have pH > 7.

ELECTROCHEMISTRY

Cathode – The electrode at which reduction occurs.

Anode – The electrode at which oxidation occurs.

Oxidation – The loss of electrons.

Reduction – The gaining of electrons.

Oxidizing Agent – A species that causes others to become oxidized.

Reducing Agent – A species that causes others to be reduced.

Cation – Positive ion

Anion – Negative ion

DEFINITIONS

Molarity of Solutions – The number of gram moles of a substance dissolved in a liter of solution.

Molality of Solutions – The number of gram moles of a substance per 1,000 grams of solvent.

Normality of Solutions – The product of the molarity of a solution and the number of valence changes taking place in a reaction.

DEFINITIONS cont.

Equivalent Mass – The number of parts by mass of an element or compound which will combine with or replace directly or indirectly 1.008 parts by mass of hydrogen, 8.000 parts of oxygen, or the equivalent mass of any other element or compound. For all elements, the atomic mass is the product of the equivalent mass and the valence.

Molar Volume of an Ideal Gas [at 0°C (32°F) and 1 atm (14.7 psia)]; 22.4 L/(g mole) [359 ft³/(lb mole)].

Mole Fraction of a Substance – The ratio of the number of moles of a substance to the total moles present in a mixture of substances. Mixture may be a solid, a liquid solution, or a gas.

DEFINITIONS cont.

Equilibrium Constant of a Chemical Reaction

$$aA + bB \rightleftharpoons cC + dD$$

$$K_{\text{eq}} = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$

Le Chatelier's Principle for Chemical Equilibrium – When a stress (such as a change in concentration, pressure, or temperature) is applied to a system in equilibrium, the equilibrium shifts in such a way that tends to relieve the stress.

DEFINITIONS cont. ...

Heats of Reaction, Solution, Formation, and Combustion – Chemical processes generally involve the absorption or evolution of heat. In an endothermic process, heat is absorbed (enthalpy change is positive). In an exothermic process, heat is evolved (enthalpy change is negative).

DEFINITIONS cont. ...

Solubility Product of a slightly soluble substance AB:

$$A_m B_n \rightarrow m A^{n+} + n B^{m-}$$

Solubility Product Constant = $K_{SP} = [A^+]^m [B^-]^n$

DEFINITIONS cont. ...

Metallic Elements – In general, metallic elements are distinguished from nonmetallic elements by their luster, malleability, conductivity, and usual ability to form positive ions.

Nonmetallic Elements – In general, nonmetallic elements are not malleable, have low electrical conductivity, and rarely form positive ions.

DEFINITIONS cont. ...

Faraday's Law – In the process of electrolytic changes, equal quantities of electricity charge or discharge equivalent quantities of ions at each electrode. One gram equivalent weight of matter is chemically altered at each electrode for 96,485 coulombs, or one Faraday, of electricity passed through the electrolyte.

DEFINITIONS cont.

A *catalyst* is a substance that alters the rate of a chemical reaction and may be recovered unaltered in nature and amount at the end of the reaction. The catalyst does not affect the position of equilibrium of a reversible reaction.

The *atomic number* is the number of protons in the atomic nucleus. The atomic number is the essential feature which distinguishes one element from another and determines the position of the element in the periodic table.

DEFINITIONS cont. ...

Boiling Point Elevation – The presence of a nonvolatile solute in a solvent raises the boiling point of the resulting solution compared to the pure solvent; i.e., to achieve a given vapor pressure, the temperature of the solution must be higher than that of the pure substance.

Freezing Point Depression – The presence of a solute lowers the freezing point of the resulting solution compared to that of the pure solvent.

PERIODIC TABLE OF ELEMENTS

1																	2
Н								Atomic N	umber								Не
1.0079									Symbol								4.0026
3	4											5 B	6	7	8	9	10
Li	Be							Atomic Weight					C	N	О	F	Ne
6.941	9.0122						_	10.811 12.011 14.007 15.999 18.998							18.998	20.179	
11	12	-						,					14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.990	24.305											26.981	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.941	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.921	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89**	104	105													
Fr	Ra	Ac	Rf	На													
(223)	226.02	227.03	(261)	(262)													
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
*Lanthanide Series			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97	
**Actinide Series			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	

Date: 04/12/10

* Measured at 25 °C Reactions are written as anode half-cells. Arrows are reversed for cathode half-cells.

NOTE: In some Chemistry texts, the reactions and signs are reversed

Potential, E_0 , Volts **Corrosion Reaction** vs. Normal Hydrogen Electrode $Au \rightarrow Au^{3+} + 3e^{-}$ -1.498 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ -1.229 $Pt \rightarrow Pt^{2+} + 2e^{-}$ -1.200 $Pd \rightarrow Pd^{2+} + 2e^{-}$ -0.987 $Ag \rightarrow Ag^{+} + e^{-}$ -0.799 $2 \text{Hg} \rightarrow \text{Hg}_2^{2+} + 2 \text{e}^{-}$ -0.788 $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ -0.771 $4(OH)^{-} \rightarrow O_2 + 2H_2O + 4e^{-}$ -0.401 $Cu \rightarrow Cu^{2+} + 2e^{-}$ -0.337 $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$ -0.150 $H_2 \rightarrow 2H^+ + 2e^-$ -0.000 $Ph \rightarrow Ph^{2+} + 2e^{-}$ +0.126 $Sn \rightarrow Sn^{2+} + 2e^{-}$ +0.136 $Ni \rightarrow Ni^{2+} + 2e^{-}$ +0.250 $Co \rightarrow Co^{2+} + 2e^{-}$ +0.277 $Cd \rightarrow Cd^{2+} + 2e^{-}$ +0.403 $Fe \rightarrow Fe^{2+} + 2e^{-}$ +0.440 $Cr \rightarrow Cr^{3+} + 3e^{-}$ +0.744 $Zn \rightarrow Zn^{2+} + 2e^{-}$ +0.763 $A1 \rightarrow A1^{3+} + 3e^{-}$ +1.662 $Mg \rightarrow Mg^{2+} + 2e^{-}$ +2.363 $Na \rightarrow Na^+ + e^-$ +2.714 $K \rightarrow K^+ + e^-$ +2.925Managed at 25°C Basetians are written as anode helf calls

Standard Oxidation Potentials for Corrosion Reactions*

Date: 04/12/10

IMPORTANT FAMILIES OF ORGANIC COMPOUNDS

	FAMILY											
	Alkane	Alkene	Alkyne	Arene	Haloalkane	Alcohol	Ether	Amine	Aldehyde	Ketone	Carboxylic Acid	Ester
Specific Example	CH ₃ CH ₃	$H_2C = CH_2$	HC ≡ CH		CH3CH2Cl	CH₃CH₂OH	СН3ОСН3	CH ₃ NH ₂	O ∥ CH₃CH	O ∥ CH₃CCH₃	O ∥ CH₃COH	O CH ₃ COCH ₃
IUPAC Name	Ethane	Ethene or Ethylene	Ethyne or Acetylene	Benzene	Chloroethane	Ethanol	Methoxy- methane	Methan- amine	Ethanal	Acetone	Ethanoic Acid	Methyl ethanoate
Common Name	Ethane	Ethylene	Acetylene	Benzene	Ethyl chloride	Ethyl alcohol	Dimethyl ether	Methyl- amine	Acetal- dehyde	Dimethyl ketone	Acetic Acid	Methyl acetate
General Formula	RH	$RCH = CH_2$ $RCH = CHR$ $R_2C = CHR$ $R_2C = CR_2$	$RC \equiv CH$ $RC \equiv CR$	ArH	RX	ROH	ROR	RNH ₂ R ₂ NH R ₃ N	O II RCH	O R ₁ CR ₂	O RCOH	O RCOR
Functional Group	C–H and C–C bonds	C = C	- C ≡ C -	Aromatic Ring	-c-x	-С-ОН	-c-o-c-	-C-N-	— С— Н	O = - C-	О -С-ОН	-C-O-C-

Handbook

End of Chemistry Section In Handbook