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Covering shadows with a smaller volume
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Abstract

For n � 2 a construction is given for convex bodies K and L in R
n such that the orthogonal projection

Lu onto the subspace u⊥ contains a translate of Ku for every direction u, while the volumes of K and L

satisfy Vn(K) > Vn(L).
A more general construction is then given for n-dimensional convex bodies K and L such that each

orthogonal projection Lξ onto a k-dimensional subspace ξ contains a translate of Kξ , while the mth intrinsic
volumes of K and L satisfy Vm(K) > Vm(L) for all m > k.

For each k = 1, . . . , n, we then define the collection Cn,k to be the closure (under the Hausdorff topology)
of all Blaschke combinations of suitably defined cylinder sets (prisms).

It is subsequently shown that, if L ∈ Cn,k , and if the orthogonal projection Lξ contains a translate of Kξ

for every k-dimensional subspace ξ of R
n, then Vn(K) � Vn(L).

The families Cn,k , called k-cylinder bodies of R
n, form a strictly increasing chain

Cn,1 ⊂ Cn,2 ⊂ · · · ⊂ Cn,n−1 ⊂ Cn,n,

where Cn,1 is precisely the collection of centrally symmetric compact convex sets in R
n, while Cn,n is the

collection of all compact convex sets in R
n. Members of each family Cn,k are seen to play a fundamental

role in relating covering conditions for projections to the theory of mixed volumes, and members of Cn,k

are shown to satisfy certain geometric inequalities. Related open questions are also posed.
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Suppose that K and L are compact convex subsets of n-dimensional Euclidean space. For a
given dimension 1 � k < n, suppose that every k-dimensional orthogonal projection (shadow) of
K can be translated inside the corresponding projection of L. Does it follow that K has smaller
volume than L? In this article it is shown that the answer in general is no. It is then shown that
the answer is yes if L is chosen from a suitable family of convex bodies that includes certain
cylinders and other sets with a direct sum decomposition.

Many inverse questions from convex and integral geometry take the following form: Given
two convex bodies K and L, and two geometric invariants f and g (such as volume, or surface
area, or some measure of sections or projections), does f (K) � f (L) imply g(K) � g(L)? If
not, then what additional conditions on K and L are necessary?

These questions are motivated in part by the projection theorems of Groemer [7], Hadwiger
[9], and Rogers [17]. In particular, if two compact convex sets have translation congruent (or,
more generally, homothetic) projections in every linear subspace of some chosen dimension
k � 2, then the original sets K and L must be translation congruent (or homothetic). Rogers
also proved analogous results for sections of sets with hyperplanes through a base point [17].
These results then set the stage for more general (and often much more difficult) questions, in
which the rigid conditions of translation congruence or homothety are replaced with weaker
conditions, such as containment up to translation, inequalities of measure, etc.

Two notorious questions of this kind are the Shephard Problem [20] (solved independently
by Petty [16] and Schneider [18]), and the Busemann–Petty Problem [2] (solved in work of
Gardner [3,6], Schlumprecht [6], Koldobsky [6,13], and Zhang [22,23]). Both questions address
properties of bodies K and L that are assumed to be centrally symmetric about the origin.

The Shephard Problem asks: if the (n − 1)-dimensional volumes of the orthogonal projec-
tions Ku and Lu of convex bodies K and L onto the subspace u⊥ satisfy the volume inequality
Vn−1(Ku) � Vn−1(Lu) for every direction u, does it follow that Vn(K) � Vn(L)? Although there
are ready counterexamples for general (possibly non-symmetric) convex bodies, the problem is
more difficult to address under the stated assumption that K and L are both centrally symmet-
ric. In this case Petty and Schneider have shown that, while the answer in general is still no
for dimensions n � 3, the answer is yes when the convex set L is a projection body; that is, an
origin-symmetric zonoid.

The Busemann–Petty Problem addresses the analogous question for sections through the ori-
gin. Suppose that convex bodies K and L are centrally symmetric about the origin. If we assume
that the (n − 1)-dimensional sections of K and L satisfy the volume inequality

Vn−1
(
K ∩ u⊥)

� Vn−1
(
L ∩ u⊥)

for every direction u, does it follow that Vn(K) � Vn(L)? Surprisingly the answer is no for
bodies of dimension n � 5 and yes for bodies of dimension n � 4 (see [3,6,22,23]). Moreover,
Lutwak [14] has shown that, in analogy to the Petty–Schneider theorem, the answer is always
yes when the set L is an intersection body, a construct highly analogous to projection bodies
(zonoids), but for which projection (the cosine transform) is replaced in the construction with
intersection (the Radon transform, respectively). A more complete discussion of background to
the Busemann–Petty Problem, its solution, and its variations (some of which remain open), can
be found in the comprehensive book by Gardner [5].

Both of the previous problems assume that the bodies in question are either centrally symmet-
ric or symmetric about the origin; that is, K = −K and L = −L (up to translation). If this ele-
mentary assumption is omitted, then both questions are easily seen to have negative answers. For
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the projection problem, compare the Reuleaux triangle, and its higher-dimensional analogues,
with the Euclidean ball, or compare any non-centered convex body with its Blaschke body [5,
p. 116]. For the intersection problem, consider a non-centered planar set having an equichordal
point, or the dual analogue of the Blaschke body of a non-centered set (see [5, p. 117] or [14]).

In the present article we consider a related, but fundamentally different, family of questions.
Suppose that, instead of comparing the areas of the projections of K and L, we assume that

the projections of L contain translates of the projections of K . Specifically, suppose that, for
each direction u, the orthogonal projection Lu of L contains a translate of the corresponding
projection Ku (although the required translation may vary depending on u). Does it follow that
L contains a translate of K? Does it even follow that Vn(K) � Vn(L)?

These questions have easily described negative answers in dimension 2, since the projections
are 1-dimensional, and convex 1-dimensional sets have very little structure. (Once again, consider
the Reuleaux triangle and the circle.) The interesting cases begin when comparing 2-dimensional
projections of 3-dimensional objects, and continue from there.

For higher dimensions, a simple example illustrates once again that K might not fit inside L,
even though every projection of L can be translated to cover the corresponding projection of K .
Let L denote the unit Euclidean 3-ball, and let K denote the regular tetrahedron having edge
length

√
3. Jung’s Theorem [1, p. 84], [21, p. 320] implies that every 2-projection of K is cov-

ered by a translate of the unit disk. But a simple computation shows that L does not contain
a translate of the tetrahedron K . An analogous construction yields a similar result for higher-
dimensional simplices and Euclidean balls. One might say that, although K can “hide behind”
L from any observer’s perspective, this does not imply that K can hide inside L. The question
of what additional conditions on K and L guarantee the covering of K by a translate of L is
addressed in [10,11].

In the previous counterexample, meanwhile, it is still the case that the set L having larger
(covering) shadows also has larger volume than K . Although the question of comparing volumes
is more subtle, there are counterexamples to this property as well.

This article presents the following results for every dimension n � 2:

1. There exist n-dimensional convex bodies K and L such that the orthogonal projection Lu

contains a translate of Ku for every direction u, while Vn(K) > Vn(L).
2. There is a large class of bodies Cn,n−1 such that, if L ∈ Cn,n−1 and if Lu contains a translate

of Ku for every direction u, then Vn(K) � Vn(L).

In particular, it will be shown that if the body L having covering shadows is a cylinder, then
Vn(K) � Vn(L). The more general collection Cn,n−1, called (n − 1)-cylinder bodies, play a role
for the covering projection problem in analogy to that of intersection bodies for the Busemann–
Petty Problem and that of zonoids for the Shephard Problem.

These results generalize to questions about shadows (projections) of arbitrary lower dimen-
sion. If ξ is a k-dimensional subspace of R

n, denote by Kξ the orthogonal projection of a body
K into ξ . For convex bodies K in R

n and 0 � m � n, denote by Vm(K) the mth intrinsic volume
of K . The main theorems of this article also yield the following more general observations, for
each n � 2 and each 1 � k � n − 1:

1′. There exist n-dimensional convex bodies K and L such that the orthogonal projection Lξ

contains a translate of Kξ for each k-dimensional subspace ξ of R
n, while Vm(K) > Vm(L)

for all m > k.
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2′. There is a class of bodies Cn,k such that, if L ∈ Cn,k and if the orthogonal projection Lξ

contains a translate of Kξ for each k-dimensional subspace ξ of R
n, then Vn(K) � Vn(L).

The aforementioned counterexamples are constructed in Sections 2 and 3. Cylinder bodies
and their relation to projection and covering are described in Sections 4 and 5, leading to the
Shadow Containment Theorem 5.3, which relates covering of shadows to a family of inequalities
for mixed volumes. These developments lead in turn to Theorem 6.1, where it is shown that, if
every shadow of a cylinder body L contains a translate of the corresponding shadow of K , then
L must have greater volume than K . In Section 7 the counterexample constructions of Sections 2
and 3 are used to prove a family of geometric inequalities satisfied by members of each collection
Cn,k . Section 8 uses Theorem 6.1 to prove that Vn(K) � nVn(L) whenever the projections of K

can be translated inside those of L.
The constructions and theorems of this article motivate a number of open questions related to

covering projections, some of which are posed in the final section.

1. Preliminary background

Denote by Kn the set of compact convex subsets of R
n. The n-dimensional (Euclidean) vol-

ume of a convex set K will be denoted Vn(K). If u is a unit vector in R
n, denote by Ku the

orthogonal projection of a set K onto the subspace u⊥.
Let hK : R

n → R denote the support function of a compact convex set K ; that is,

hK(v) = max
x∈K

x · v.

If u is a unit vector in R
n, denote by Ku the support set of K in the direction of u; that is,

Ku = {
x ∈ K | x · u = hK(u)

}
.

If P is a convex polytope, then P u is the maximal face of P having u in its outer normal cone.
Given two compact convex sets K,L ∈ Kn and a, b � 0 denote

aK + bL = {ax + by | x ∈ K and y ∈ L}.
An expression of this form is called a Minkowski combination or Minkowski sum. Because K and
L are convex, the set aK + bL is also convex. Convexity also implies that aK + bK = (a + b)K

for all a, b � 0.
Support functions are easily seen to satisfy the identity haK+bL = ahK + bhL. Moreover, the

volume of a Minkowski combination of two compact convex sets is given by Steiner’s formula:

Vn(aK + bL) =
n∑

i=0

(
n

i

)
an−ibiVn−i,i (K,L), (1)

where the mixed volumes Vn−i,i (K,L) depend only on K and L and the indices i and n. In
particular, if we fix two convex sets K and L then the function f (a, b) = Vn(aK + bL) is a
homogeneous polynomial of degree n in the non-negative variables a, b.

Each mixed volume Vn−i,i (K,L) is non-negative, continuous in the entries K and L, and
monotonic with respect to set inclusion. Note also that Vn−i,i (K,K) = Vn(K). If ψ is an affine
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transformation whose linear component has determinant denoted detψ , then Vi,n−i (ψK,ψL) =
|detψ |Vn−i,i (K,L).

If P is a polytope with non-empty interior in R
n, a facet of P is a face (support set) of P

having dimension n − 1. The mixed volume Vn−1,1(P,K) satisfies the classical “base-height”
formula

Vn−1,1(P,K) = 1

n

∑
u⊥∂P

hK(u)Vn−1
(
P u

)
, (2)

where this sum is finite, taken over all outer normals u to the facets on the boundary ∂P . These
and many other properties of convex bodies and mixed volumes are described in detail in each
of [1,19,21].

The Brunn–Minkowski inequality asserts that, for 0 � λ � 1,

Vn

(
(1 − λ)K + λL

)1/n � (1 − λ)Vn(K)1/n + λVn(L)1/n. (3)

If K and L have interior, then equality holds in (3) if and only if K and L are homothetic; that
is, iff there exist a > 0 and x ∈ R

n such that L = aK + x. On combining (3) with Steiner’s
formula (1) one obtains the Minkowski mixed volume inequality:

Vn−1,1(K,L)n � Vn(K)n−1Vn(L), (4)

with the same equality conditions as in (3). See, for example, any of [1, p. 98], [4], [5, p. 417],
[19, p. 317], [21, p. 300].

If K ∈ Kn has non-empty interior, define the surface area measure SK on the (n − 1)-
dimensional unit sphere S

n−1 as follows. For A ⊆ S
n−1 denote by KA = ⋃

u∈A Ku, and define
SK(A) = Hn−1(KA), the (n−1)-dimensional Hausdorff measure of the subset KA of the bound-
ary of K . (See [19, p. 203].)

If P is a polytope, then SP is a discrete measure concentrated at precisely those directions u

that are outer normals to the facets of P .
The measure SK is easily shown to satisfy the property that

∫
Sn−1

udSK = 
o, (5)

that is, the mass distribution on the sphere described by SK has center of mass at the origin. The
identity (2) can now be expressed in its more general form:

Vn−1,1(K,L) = 1

n

∫
Sn−1

hL(u)dSK(u), (6)

for all convex bodies K and L such that K has non-empty interior. It follows from (6) and the
Minkowski linearity of the support function that, for K,L,M ∈ Kn and a, b � 0,

Vn−1,1(K,aL + bM) = aVn−1,1(K,L) + bVn−1,1(K,M). (7)
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Let Bn denote the n-dimensional Euclidean ball centered at the origin and having unit radius.
Since hBn = 1 in every direction, it follows that nVn−1,1(K,Bn) = S(K), the surface area of the
convex body K .

Minkowski’s Existence Theorem [1, p. 125], [5, p. 400], [19, p. 390] gives an important and
useful converse to the identity (5): If μ is a non-negative measure on the unit sphere S

n−1 such
that μ has center of mass at the origin, and if μ is not concentrated on any great (equatorial)
(n − 1)-subsphere, then μ = SK for some K ∈ Kn. Moreover, this convex body K is unique up
to translation.

Minkowski’s Existence Theorem provides the framework for the following definition: For
K,L ∈ Kn and a, b � 0, define the Blaschke combination a · K # b · L to be the unique convex
body (up to translation) such that

Sa·K#b·L = aSK + bSL.

Although the Blaschke sum K # L is identical (up to translation) to the Minkowski sum K + L

for convex bodies K and L in R
2, the two sums are substantially different for bodies in R

n where
n � 3. Moreover, for dimension n � 3, the scalar multiplication a · K also differs from the usual

scalar multiplication aK used with Minkowski combinations. Specifically, a ·K = a
1

n−1 K , since
surface area in R

n is homogeneous of degree n − 1.
It follows from (6) that, for K,L,M ∈ Kn and a, b � 0,

Vn−1,1(a · K # b · L,M) = aVn−1,1(K,M) + bVn−1,1(L,M). (8)

Note the important difference between (7) and (8) for n � 3.
It is not difficult to show that every polytope with interior having generic facet normals is a

Blaschke combination of a finite number of simplices, while every centrally symmetric polytope
with interior is Blaschke combination of a finite number of parallelotopes (i.e., affine images
of cubes) [8, p. 334]. A standard continuity argument (using the Minkowski Existence Theo-
rem and the selection principle for convex bodies [19, p. 50]) then implies that every convex
body can be approximated (in the Hausdorff topology) by Blaschke combinations of simplices,
while every centrally symmetric convex body can be approximated by Blaschke combinations of
parallelotopes.

A brief and elegant discussion of Blaschke sums, their properties, and applications, can also
be found in [14].

2. A counterexample

We will exhibit convex bodies K and L in R
n such that Vn(K) > Vn(L), while the orthogonal

projection Lu contains a translate of the corresponding projection Ku for each unit direction u.
Note that a suitable disk and Reuleaux triangle provide a well-known example in the 2-

dimensional case. This section provides examples for bodies of dimension n � 3.
For K ∈ Kn, denote by rK the inradius of K ; that is, the maximum radius taken over all

Euclidean balls inside K . Denote by dK the minimal width of K ; that is, the minimum length
taken over all orthogonal projections of K onto lines through the origin. The minimal width is
also equal to the minimum distance between any two parallel support planes for K .
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Let Δ denote the n-dimensional regular simplex having unit edge length. The following well-
known quantities will be used in the construction that follows:

τn = volume of Δ =
√

n + 1

2n/2n! ,

S(Δ) = surface area of Δ = (n + 1)
√

n

2
n−1

2 (n − 1)!
= (n + 1)τn−1,

rΔ = inradius of Δ = 1√
2n(n + 1)

= nτn

S(Δ)
,

and

dΔ = minimal width of Δ =
{

2(n+1)√
n+2

rΔ,

2
√

nrΔ

=
⎧⎨
⎩

√
2(n+1)
n(n+2)

if n is even,√
2

n+1 if n is odd.
(9)

See, for example, [1, p. 86].
To construct and verify the counterexample it will be necessary to compare the minimal width

and inradius of a regular simplex with those of its lower-dimensional projections. Steinhagen’s
inequality asserts that, for K ∈ Kn,

rK �

⎧⎨
⎩

√
n+2

2n+2 dK if n is even,

1
2
√

n
dK if n is odd.

(10)

A proof of (10) is given in [1, p. 86]. If u is a unit vector, then the orthogonal projection Δu

satisfies dΔu � dΔ, where dΔu is now computed from within the (n − 1)-dimensional subspace
u⊥. Since dim(Δu) = n − 1 has parity opposite that of n, it follows from (10) that

rΔu �
{ √

n+1
2n

dΔu

1
2
√

n−1
dΔu

�
{ √

n+1
2n

dΔ if n is odd,

1
2
√

n−1
dΔ if n is even.

Combining this with (9) yields

rΔu �

⎧⎪⎨
⎪⎩

1
n
√

2
if n is odd

√
n+1√

2
√

n(n−1)(n+2)
if n is even

⎫⎪⎬
⎪⎭ � 1

n
√

2
. (11)

For 0 � ε � 1, denote

Kε = εΔ +
(

1 − ε

n
√

2

)
Bn.
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Proposition 2.1. For each unit vector u in R
n, there exists v ∈ u⊥ such that

Kε
u + v ⊆ Δu.

In other words, each shadow of the simplex Δ contains a translate of the corresponding
shadow of Kε .

Proof. Let u be a unit vector in R
n. Since 1

n
√

2
� rΔu , there exists w ∈ u⊥ such that

1

n
√

2
Bn−1 ⊆ Δu − w.

Hence,

Kε
u = εΔu + (1 − ε)

1

n
√

2
Bn−1 ⊆ εΔu + (1 − ε)(Δu − w) = Δu + (ε − 1)w.

Setting v = (1 − ε)w, we have Kε
u + v ⊆ Δu. �

Next, recall from Steiner’s formula (1) that if K is a convex body in R
n then

Vn(εK + αBn) = εnVn(K) + εn−1αS(K) + α2f (α, ε), (12)

where f (α, ε) is a polynomial in α and ε having non-negative coefficients.

Proposition 2.2. If 1 − ε > 0 is sufficiently small, then Vn(K
ε) > Vn(Δ).

Proof. We need to show that Vn(K
ε) − Vn(Δ) > 0. Applying (12) yields

Vn

(
Kε

) − Vn(Δ) = Vn

(
εΔ + 1 − ε

n
√

2
Bn

)
− Vn(Δ)

= (
εn − 1

)
Vn(Δ) + εn−1

(
1 − ε

n
√

2

)
S(Δ) +

(
1 − ε

n
√

2

)2

fn(ε)

= (
εn − 1

)(√
n + 1

2n/2 n!
)

+ εn−1
(

1 − ε

n
√

2

)(
(n + 1)

√
n

2
n−1

2 (n − 1)!

)
+

(
1 − ε

n
√

2

)2

fn(ε)

= (
εn − 1

)(√
n + 1

2n/2 n!
)

+ εn−1(1 − ε)

(
(n + 1)

√
n

2n/2 n!
)

+
(

1 − ε

n
√

2

)2

fn(ε)

where fn(ε) is a polynomial in ε.
It follows that Vn(K

ε) − Vn(Δ) > 0 if and only if

εn−1(1 − ε)

(
(n + 1)

√
n

n/2

)
+

(
(1 − ε)2

2

)
fn(ε) >

(
1 − εn

)(√
n + 1
n/2

)

2 n! 2n 2 n!
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if and only if

εn−1
√

n(n + 1) + 2n/2n!
(

1 − ε

2n2
√

n + 1

)
fn(ε) >

(
1 + ε + ε2 + · · · + εn−1). (13)

As ε → 1, the left-hand side of (13) approaches
√

n(n + 1), while the right-hand side ap-
proaches n, a strictly smaller value for all positive integers n. It follows that Vn(Kε) > Vn(Δ) for
ε sufficiently close to 1. �

Propositions 2.1 and 2.2 imply that if 0 < ε < 1 is sufficiently close to 1, then every shadow
of Δ contains a translate of the corresponding shadow of the body Kε , even though Vn(K

ε) >

Vn(Δ).
More precise conditions on admissible values of ε depend on n. For the case n = 3 the in-

equalities used in the proof of Proposition 2.2, along with some additional very crude estimates,
imply that ε = 0.9 gives a specific counterexample. In other words, the 3-dimensional convex
bodies

K = 9

10
Δ3 + 1

30
√

2
B3 and Δ3

have the property that each shadow of the unit regular tetrahedron Δ3 contains a translate of the
corresponding shadow of K , even though K has greater volume than Δ3. (A calculation yields
V3(K) ≈ 0.122 and V3(Δ3) ≈ 0.118.)

At this point one might ask whether suitable conditions on either of the bodies K and L might
guarantee that covering shadows implies larger volume. It is not difficult to show that if L is
centrally symmetric, then L will have greater volume than K when the shadows of L can cover
those of K . To see this, suppose that L = −L. If Ku ⊆ Lu + v, then −Ku ⊆ −Lu − v = Lu − v

so that

Ku + (−Ku) ⊆ Lu + v + Lu − v = 2Lu

for every direction u. It follows that K + (−K) ⊆ L + L = 2L. Monotonicity of volume and the
Brunn–Minkowski Inequality (3) then imply that

Vn(L)1/n � Vn

(
1

2
K + 1

2
(−K)

)1/n

� 1

2
Vn(K)1/n + 1

2
Vn(−K)1/n = Vn(K)1/n,

so that Vn(L) � Vn(K).
This volume inequality also turns out to hold when L is chosen from a much larger family of

bodies, to be described in Section 6.

3. A more general counterexample

The counterexample of Section 2 will now be generalized. If ξ is a k-dimensional subspace
of R

n, denote by Kξ the orthogonal projection of a set K ⊆ R
n to the subspace ξ . For 0 � m � n

denote by Vm(K) the mth intrinsic volume of K . The intrinsic volume functional Vm restricts to
m-dimensional volume on m-dimensional convex sets and is proportional to the mean m-volume
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of the m-dimensional orthogonal projections of K for more general K ∈ Kn. See, for example,
[12, p. 125] or [19, p. 210].

The following lemma is helpful for extending some low-dimensional constructions to higher
dimension.

Lemma 3.1. Suppose that K and L are compact convex sets in R
j ⊆ R

n, where j � n, and
suppose that Lξ contains a translate of Kξ for each i-subspace ξ of R

j . Then Lξ contains a
translate of Kξ for each i-subspace ξ of R

n.

In other words, if the i-dimensional shadows of L can cover those of K in R
j , then this

covering relation is preserved when K and L are embedded together (along with R
j ) in the

higher-dimensional space R
n.

Proof. Suppose that K and L are compact convex sets in R
j , and suppose that Lξ contains a

translate of Kξ for each i-subspace ξ of R
j .

Suppose that η is an i-dimensional subspace of R
j+1. Then dim(η⊥) = j − i + 1, and

dim(η⊥ ∩ R
j ) = j − i for generic choices of η. Assume η is chosen this way.

Let ξ denote the orthogonal complement of η⊥ ∩R
j taken within R

j . Since dim(ξ) = i, there
exists v ∈ R

j such that (K + v)ξ ⊆ Lξ , by the covering assumption for K and L in R
j . This

means that, for each x ∈ K + v, there exists y ∈ L such that x − y is orthogonal to ξ . It follows
from the construction of ξ that x − y ∈ η⊥.

Hence, for all x ∈ K +v, there exists y ∈ L such that x −y ∈ η⊥. This implies that Kη +vη ⊆
Lη .

We have shown that Lη contains a translate of Kη for each i-subspace η of R
j+1 such that

dim(η⊥ ∩ R
j ) = j − i. Since this is a dense family of i-subspaces, the lemma follows more

generally for all i-subspaces of R
j+1. By a suitable iteration of this argument, the lemma then

follows for i-subspaces of R
n, for any n > j . �

We can now generalize the counterexample of Section 2.

Theorem 3.2. Let n � 3 and 1 � k < n. There exist convex bodies K,L ∈ Kn such that Lξ

contains a translate of Kξ for each k-dimensional subspace ξ , while Vm(K) > Vm(L) for all
m > k.

Note that this theorem is already well known for the case k = 1. In that particular case, the
covering condition merely asserts that the width of K in any direction is smaller than or equal
to the corresponding width of L. The novel aspect of this result addresses the cases in which
2 � k < n.

Proof. If k = 1, then let K be an n-simplex, and let M = 1
2K + (− 1

2K), the central symmetral
of K . It then follows from the Minkowski mixed volume inequality (4) and the classical mean
projection formulas for intrinsic volumes [5, p. 408], [12, p. 125], [19, p. 235], that Vm(M) >

Vm(K) for m � 2, while K and M have identical width in every direction.
Now suppose that k � 2. Let K̂ and L̂ be chosen in Kk+1 so that L̂ξ contains a translate of

K̂ξ for each k-subspace ξ of R
k+1, while Vk+1(K̂) > Vk+1(L̂). (One could follow the explicit

construction given in Section 2, for example.)
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If n = k + 1, we are done. If n > k + 1, embed K̂ and L̂ in R
n via the usual coordinate

embedding of R
k+1 in R

n. Then L̂ξ can cover K̂ξ for all k-subspaces ξ of R
n, by Lemma 3.1.

Let C denote the unit cube in R
n−k−1 with edges parallel to the standard axes in the orthogonal

complement to R
k+1 in R

n. Let K = K̂ + εC and L = L̂ + εC. Then Lξ contains a translate of
Kξ for each k-dimensional subspace ξ once again, since Kξ = K̂ξ + εCξ , and similarly for L.

Moreover, if m � k + 1 then

Vm(K) = Vm(K̂ + εC) =
∑

i+j=m

Vi(K̂)Vj (C)εj

by the Cartesian product formula for intrinsic volumes [12, p. 130]. Hence,

Vm(K) =
k+1∑
i=0

Vi(K̂)Vm−i (C)εm−i

=
k+1∑
i=0

(
n − k − 1

m − i

)
Vi(K̂)εm−i

= εm−k−1
(

n − k − 1

m − k − 1

)
Vk+1(K̂) + fK(ε)

where fK(ε) is a polynomial in ε composed of monomials having degree greater than m− k −1.
A similar formula holds for Vm(L). Therefore,

Vm(K) − Vm(L) = εm−k−1
(

n − k − 1

m − k − 1

)(
Vk+1(K̂) − Vk+1(L̂)

) + (
fK(ε) − fL(ε)

)
,

where fK(ε) − fL(ε) is a polynomial in ε composed of monomials having degree greater than
m − k − 1. Since the lowest degree coefficient of the polynomial formula for Vm(K) − Vm(L) is
positive, we have Vm(K) − Vm(L) > 0 when ε > 0 is sufficiently small. �
4. Cylinders and shadow covering

Let K ∈ Kn and suppose that P ∈ Kn is a polytope with non-empty interior. We say that P

circumscribes K if K ⊆ P and K also meets every facet of P .

Lemma 4.1 (Circumscribing Lemma). Let K,P ∈ Kn, where P is a polytope with non-empty
interior. If P circumscribes K then

Vn−1,1(P,K) = Vn(P ). (14)

If we are only given that K ⊆ P , then (14) holds if and only if P circumscribes K .

Proof. If K ⊆ P and if K meets every facet of P , then hK(u) = hP (u) whenever the direction
u is normal to a facet of P . Since P is a polytope, the mixed volume formula (2) yields

Vn−1,1(P,K) = 1

n

∑
hK(u)Vn−1

(
P u

) = 1

n

∑
hP (u)Vn−1

(
P u

) = Vn(P ).
u⊥∂P u⊥∂P
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Conversely, if we are only given that K ⊆ P , then hK(u) � hP (u), with equality for all
facet normals u if and only if P circumscribes K , so that (14) holds if and only if P circum-
scribes K . �

The case in which P is a simplex is especially important, because of the following theorem
of Lutwak [15] (see also [12, p. 54]), itself a consequence of Helly’s theorem.

Theorem 4.2 (Lutwak’s Containment Theorem). Let K,L ∈ Kn. Suppose that, for every simplex
Δ such that L ⊆ Δ, there is a vector vΔ ∈ R

n such that K + vΔ ⊆ Δ. Then there is a vector
v ∈ R

n such that K + v ⊆ L.

Lutwak’s theorem combines with the Circumscribing Lemma 4.1 to yield the following useful
corollary (also from [15]).

Corollary 4.3. Let K,L ∈ Kn. The inequality

Vn−1,1(Δ,K) � Vn−1,1(Δ,L)

holds for all simplices Δ, if and only if there exists v ∈ R
n such that K + v ⊆ L.

Suppose that λ1 � λ2 � · · · � λm > 0 are positive integers such that λ1 + λ2 + · · · + λm =
n. Denote λ = (λ1, λ2, . . . , λm). The vector λ is sometimes called a partition of the positive
integer n. Using this notation, the size of the largest part of any partition λ is given by the first
entry λ1.

A convex body K ∈ Kn will be called λ-decomposable if there exist affine subspaces ξi of
R

n such that dim ξi = λi and R
n = ξ1 ⊕ · · · ⊕ ξm, and if there exist compact convex sets Ki ⊆ ξi

such that K = K1 + · · · + Km. In this case we will write K = K1 ⊕ · · · ⊕ Km. The body K will
be called λ-ortho-decomposable if ξi ⊥ ξj for each i 
= j .

For example, a cylinder (prism) is an (n − 1,1)-decomposable body. A (1,1, . . . ,1)-
decomposable body is a parallelotope, while a (1,1, . . . ,1)-ortho-decomposable body is an
orthogonal box.

For k ∈ {1, . . . , n − 1}, denote by G(n, k) the collection of all k-dimensional linear subspaces
ξ of R

n, sometimes called the (n, k)-Grassmannian. For ξ ∈ G(n, k) and K ∈ Kn, we continue
to denote by Kξ the orthogonal projection of the body K onto the subspace ξ .

Lutwak’s Containment Theorem 4.2 and its Corollary 4.3 lead to the following useful condi-
tion for determining when the shadows of one body can cover those of another.

Theorem 4.4 (First Shadow Containment Theorem). Let K,L ∈ Kn, and suppose that 1 � k �
n − 1. The orthogonal projection Lξ contains a translate of the corresponding projection Kξ for
each ξ ∈ G(n, k) if and only if

Vn−1,1(C,K) � Vn−1,1(C,L)

for all λ-ortho-decomposable C ∈ Kn such that λ1 � k.
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Proof. Suppose that C is a λ-ortho-decomposable polytope, with orthogonal decomposition C =
a1C1 ⊕ · · · ⊕ amCm, where each Ci has affine hull parallel to a subspace ξi of dimension λi and
a1, . . . , am > 0. Note that

Vn(C) = Vλ1(a1C1) · · ·Vλm(amCm) = a
λ1
1 · · ·aλm

m Vλ1(C1) · · ·Vλm(Cm),

since the decomposition is orthogonal.
It follows from (2) that

Vn−1,1(C,K) = 1

n

∑
u⊥∂C

hK(u)Vn−1
(
Cu

)

where the sum is taken over all unit directions u ∈ R
n normal to facets of C. The product structure

of C then implies that

Vn−1,1(C,K) = 1

n

m∑
i=1

∑
u⊥ ∂Ci

hK(u)Vλ1(a1C1) · · ·Vλi−1
(
aiC

u
i

) · · ·Vλm(amCm)

where, for each i, the inner sum is taken over all unit directions u ∈ ξi normal to facets of Ci .
Hence,

Vn−1,1(C,K) = 1

n

m∑
i=1

Vn(C)

Vλi
(aiCi)

∑
u⊥∂Ci

hK(u)Vλi−1
(
Cu

i

)
a

λi−1
i

= 1

n

m∑
i=1

λiVn(C)

aiVλi
(Ci)

Vλi−1,1(Ci,Kξi
) (15)

for all a1, . . . , am > 0.
If Lξ contains a translate of Kξ for each ξ ∈ G(n, k), then Lη contains a translate of Kη for all

lower-dimensional subspaces η ∈ G(n, j), where 1 � j � k. In particular Lξi
can cover Kξi

for
each i, since dim ξi = λi � λ1 � k. It follows that each Vi−1,1(Ci,Kξi

) � Vi−1,1(Ci,Lξi
) by the

monotonicity and translation invariance of mixed volumes. The identity (15) now implies that
Vn−1,1(C,K) � Vn−1,1(C,L) for all λ-ortho-decomposable polytopes C. This inequality then
holds for arbitrary λ-ortho-decomposable bodies C by continuity of mixed volumes.

Conversely, suppose that Vn−1,1(C,K) � Vn−1,1(C,L) for all λ-ortho-decomposable C ∈ Kn

such that λ1 � k.
Suppose that ξ ∈ G(n, i) for some i � k. If Δ is an i-simplex in ξ ∈ G(n, i), let C = Δ+ εZ,

where ε > 0, and where Z is a unit cube in ξ⊥. The facets of C are either products of Δ with
facets of the cube εZ or products of εZ with facets of Δ. As in (15), it follows that

Vn−1,1(C,K) = i

n
Vi−1,1(Δ,Kξ )ε

n−i + 1

n
Vi(Δ)

( ∑
v⊥∂Z

hK(v)

)
εn−i−1,

where the last sum is taken over unit directions v normal to the facets of Z in ξ⊥. A similar
expression holds for Vn−1,1(C,L). Since Vn−1,1(C,K) � Vn−1,1(C,L) for every value of ε > 0,
we have Vi−1,1(Δ,Kξ ) � Vi−1,1(Δ,Lξ ).
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It follows that Vλi−1,1(Δ,Kξi
) � Vλi−1,1(Δ,Lξi

) for every λi -simplex Δ in every λi -
dimensional subspace ξi of R

n, so that each Lξi
contains a translate of Kξi

by Corollary 4.3. �
5. Cylinder bodies and shadow covering

So far we have restricted attention to orthogonal cylinders and decomposable sets. However,
the previous results generalize easily to arbitrary (possibly oblique) cylinders and decomposi-
tions.

For S ⊆ R
n and a nonzero vector u, let LS(u) denote the set of straight lines in R

n parallel to
u and meeting the set S.

Proposition 5.1. Let K,L ∈ Kn. Let ψ : R
n → R

n be a non-singular linear transformation.
Then Lu contains a translate of Ku for all unit directions u if and only if (ψL)u contains a
translate of (ψK)u for all u.

Proof. The projection Lu contains a translate of Ku for each unit vector u if and only if, for
each u, there exists vu such that

LK+vu(u) ⊆ LL(u). (16)

But LK+vu(u) = LK(u) + vu and ψLK(u) = LψK(ψu). It follows that (16) holds if and only if
LK(u) + vu ⊆ LL(u), if and only if

LψK(ψu) + ψvu ⊆ LψL(ψu) for all unit u.

Set

ũ = ψu

|ψu| and ṽ = ψvu.

The relation (16) now holds if and only if, for all ũ, there exists ṽ such that

LψK(ũ) + ṽ ⊆ LψL(ũ),

which holds if and only if (ψL)ũ contains a translate of (ψK)ũ for all ũ. �
We are now in a position to define a much larger family of objects that serve to generalize the

Shadow Containment Theorem 4.4.

Definition 5.2. For each k ∈ {1, . . . , n} denote by Cn,k the set of all bodies K ∈ Kn that can
be approximated (with respect to the usual Hausdorff metric) by Blaschke combinations of λ-
decomposable sets for any λ such that λ1 � k. Elements of Cn,k will be called the k-cylinder
bodies of R

n.

Recall that any centrally symmetric polytope with interior is a Blaschke sum of parallelotopes.
It follows that Cn,1 is precisely the set of all centrally symmetric convex bodies in R

n. For n � 3
and k � 2, the cylinder bodies Cn,k are a larger family of objects. For example, a triangular prism
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in R
3 lies in C3,2, but not in C3,1, since it is not centrally symmetric. Note also that Cn,k is closed

under affine transformations.
The definition of Cn,k depends on the ambient dimension n as well as the value k, because

the notion of Blaschke sum # depends on n. For example, while Minkowski sum satisfies the
projection identity (K + L)ξ = Kξ + Lξ for subspaces ξ ⊆ R

n, the analogous statement need
not hold for Blaschke summation.

Note also that Cn,n = Kn by definition. Moreover, it follows from the definition that Cn,i ⊆
Cn,j whenever i � j . It will be shown in Section 6 that Cn,i is a proper subset of Cn,j when i < j .
In particular, it will be seen that full-dimensional simplices are not k-cylinder bodies of R

n for
any k < n. A necessary condition for being a k-cylinder body will be described in Section 7.

The significance of each collection Cn,k is described in part by the following theorem.

Theorem 5.3 (Second Shadow Containment Theorem). Let K,L ∈ Kn and let 1 � k � n. The
following are equivalent:

(i) The orthogonal projection Lξ of L contains a translate of the corresponding projection Kξ

of K for each subspace ξ ∈ G(n, k).
(ii) The affine projection πL of L contains a translate of the corresponding projection πK of

K for each affine projection π of rank k.
(iii) Vn−1,1(C,K) � Vn−1,1(C,L) for all λ-ortho-decomposable sets C such that λ1 � k.
(iv) Vn−1,1(C,K) � Vn−1,1(C,L) for all λ-decomposable sets C such that λ1 � k.
(v) Vn−1,1(Q,K) � Vn−1,1(Q,L) for all k-cylinder bodies Q ∈ Cn,k .

Proof. The equivalence of (i) and (ii) follows from Proposition 5.1. The equivalence of (i) and
(iii) follows from Theorem 4.4.

To show that (iii) implies (iv), suppose that (iii) holds for the pair K,L. It follows from (i)
and Proposition 5.1 that (i) also holds for the pair of bodies ψ−1K,ψ−1L, for any non-singular
affine transformation ψ . Therefore (iii) also holds for the pair of bodies ψ−1K,ψ−1L; that is,

Vn−1,1
(
C,ψ−1K

)
� Vn−1,1

(
C,ψ−1L

)
for all λ-ortho-decomposable sets C such that λ1 � k. Let us suppose that ψ has unit determi-
nant. Then Vn−1,1(ψC,K) = Vn−1,1(C,ψ−1K), and similarly for L, by the affine invariance of
(mixed) volumes, so that

Vn−1,1(ψC,K) � Vn−1,1(ψC,L)

for all λ-ortho-decomposable sets C such that λ1 � k. If C′ is a λ-decomposable set, then C′ =
ψC for some λ-ortho-decomposable set C and some affine transformation ψ of unit determinant.
Statement (iv) now follows.

(iv) implies (v) by the Blaschke-linearity of the functional Vn−1,1(·,·) in its first parameter
and the continuity of Vn−1,1.

Finally, (v) implies (iv), and (iv) implies (iii), in both cases a fortiori. �
6. A positive answer for covering cylinder bodies

In Section 3 we described examples of convex bodies K and L such that the orthogonal
projection Lξ contains a translate of the corresponding projection Kξ for each ξ ∈ G(n, k), even
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though Vn(L) < Vn(K). The next theorem shows that this volume anomaly can be avoided if
L ∈ Cn,k .

Theorem 6.1. Let K,L ∈ Kn and let 1 � k � n − 1. Suppose that the orthogonal projection Lξ

contains a translate of the corresponding projection Kξ for each ξ ∈ G(n, k). If L ∈ Cn,k , then
Vn(K) � Vn(L).

If, in addition, the set L has non-empty interior, then Vn(K) = Vn(L) if and only if K and L

are translates.

Proof. If the orthogonal projection Lξ of L contains a translate of the corresponding projection
Kξ of K for each ξ ∈ G(n, k), then

Vn−1,1(Q,K) � Vn−1,1(Q,L)

for all Q ∈ Cn,k , by Theorem 5.3. If L ∈ Cn,k as well, then

Vn−1,1(L,K) � Vn−1,1(L,L) = Vn(L).

Meanwhile, the Minkowski mixed volume inequality (4) asserts that

Vn(L)(n−1)/nVn(K)1/n � Vn−1,1(L,K).

Hence Vn(K) � Vn(L). If equality holds and Vn(L) > 0, then K and L are homothetic bodies of
the same volume by the equality conditions of (4), so that K and L must be translates. �

The simplicial counterexamples of Section 2 along with Theorem 6.1 yield the following
immediate corollary.

Corollary 6.2. An n-dimensional simplex is never an element of Cn,n−1.

In particular, the collection of (n − 1)-cylinder bodies Cn,n−1 forms a proper subset of
Cn,n = Kn.

More generally we have the following.

Corollary 6.3. For 1 � i < j � n the set Cn,i is a proper subset of Cn,j .

Proof. It follows directly from the definition of Cn,i that Cn,i ⊆ Cn,j when i < j . It remains to
show that Cn,i 
= Cn,j when i < j .

To see this, observe that the set L constructed in the proof of Theorem 3.2 satisfies L ∈ Cn,k+1,
because L is λ-decomposable for λ = (k + 1,1, . . . ,1). Let K also be chosen as in the proof of
Theorem 3.2. Recall that the k-shadow Lξ contains a translate of Kξ for every ξ ∈ G(n, k). Since
Vn(L) < Vn(K), it follows from Theorem 6.1 that L /∈ Cn,k . Hence Cn,k 
= Cn,k+1. �

In other words, the collections Cn,k form a strictly increasing chain

Cn,1 ⊂ Cn,2 ⊂ · · · ⊂ Cn,n−1 ⊂ Cn,n = Kn

where the elements of Cn,1 are precisely the centrally symmetric sets in Kn.



D.A. Klain / Advances in Mathematics 224 (2010) 601–619 617
7. A geometric inequality for cylinder bodies

For positive integers n � 2 denote

σn =
⎧⎨
⎩

√
n+2

2n+2 if n is even,

1
2
√

n
if n is odd.

Recall that we denote the surface area of a convex body K by S(K) and the minimal width of
K by dK .

Theorem 7.1 (Cylinder body inequality). Let K ∈ Kn. If K ∈ Cn,i , then

σidKS(K) � nVn(K). (17)

Proof. If Vn(K) = 0 then dK = 0 as well, so that both sides of (17) are zero.
Suppose that Vn(K) > 0. By Steinhagen’s inequality (10) and the fact that dimK = n,

rKξ � σidKξ � σidK,

for each subspace ξ ∈ G(n, i), where dKξ is computed from within the subspace ξ .
For 0 � ε � 1, denote Kε = εK + (1 − ε)σidKBn, where Bn is an n-dimensional unit Eu-

clidean ball. Since

σidK(Bn)ξ ⊆ rKξ (Bn)ξ ⊆ Kξ up to translation,

we have

Kε
ξ ⊆ εKξ + (1 − ε)Kξ = Kξ up to translation,

for each subspace ξ ∈ G(n, i). If K ∈ Cn,i , then Vn(K
ε) � Vn(K), by Theorem 6.1. Moreover,

Steiner’s formula (12) implies that

Vn

(
Kε

) = εnVn(K) + εn−1(1 − ε)σidKS(K) + (1 − ε)2f (ε),

where f (ε) is a polynomial in ε. Since Vn(K
ε) − Vn(K) � 0 for 0 � ε < 1, we have

(
εn − 1

)
Vn(K) + εn−1(1 − ε)σidKS(K) + (1 − ε)2f (ε) � 0

so that

εn−1σidKS(K) + (1 − ε)f (ε) �
(
1 + ε + · · · + εn−1)Vn(K)

for all 0 � ε < 1. As ε → 1 this implies that σidKS(K) � nVn(K). �
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8. A volume ratio bound

In Section 2 we described n-dimensional convex bodies K and L such that the orthogonal
projection Lu contains a translate of Ku for every direction u, while Vn(K) > Vn(L). In such
instances, one could ask instead for an upper bound on the volume ratio Vn(K)

Vn(L)
. An application

of Theorem 6.1 yields the following crude estimate.

Theorem 8.1. Let K,L ∈ Kn, and suppose that the orthogonal (n − 1)-dimensional projection
Lu contains a translate of the corresponding projection Ku for each direction u. Then Vn(K) �
nVn(L).

Recall that the diameter DK of a convex body K is the maximum distance between any two
points of the body K , and is also equal to the maximum width, that is, the maximum distance
between any two parallel supporting hyperplanes of K .

Proof. Suppose that the diameter DL of L is realized in the unit direction v. A standard Steiner
symmetrization (or, alternatively, shaking) argument implies that

Vn(L) � 1

n
DLVn−1(Lv).

Let v̄ denote the unit line segment having endpoints at the origin o and at v, and let C be the
orthogonal cylinder in R

n given by C = Lv ⊕ DLv̄. After a suitable translation, we may assume
that L ⊆ C. From the original covering assumption for L it then follows that each projection Ku

can be translated inside the corresponding projection Cu of the cylinder C. By Theorem 6.1, it
then follows that

Vn(K) � Vn(C) = DLVn−1(Lv) � nVn(L). �
9. Some open questions

The results of the previous sections motivate several open questions about convex bodies and
projections.

I. Let K,L ∈ Kn such that Vn(L) > 0, and let 1 � k � n − 1. Suppose that the orthogonal
projection Lξ contains a translate of the corresponding projection Kξ of K for each subspace
ξ ∈ G(n, k).
What is the best upper bound for the ratio Vn(K)

Vn(L)
?

An answer to this question would improve Theorem 8.1.
II. Given a partition λ of a positive integer n, define Cλ to be the collection of all convex bodies

that can be approximated by Blaschke sums of μ-decomposable convex bodies, taken over
all partitions μ that refine the partition λ.
If λ and σ are incomparable partitions of n (with respect to partition refinement), how are
Cλ and Cσ related? Can we describe their relative geometric significance in the context of
projections?

III. Up to translation, zonoids can be thought of as the image of the projection body operator
on convex sets or of the cosine transform on support functions, and intersection bodies are
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constructed by taking the Radon transform of the radial function of a convex (or star-shaped)
set [5, p. 323], [14], [19, p. 416]. Is there an analogous integral geometric description for the
families Cλ and Cn,k?

IV. What simple tests, conditions, or inequalities determine whether or not a convex body K is
an element of some Cλ or Cn,k?

V. Let K,L ∈ Kn such that Vn(L) > 0, and let 1 � k � n − 1. Suppose that the orthogonal
projection Lξ contains a translate of the corresponding projection Kξ for each ξ ∈ G(n, k).
Under what simple (easy to state, easy to verify) additional conditions does it follow that K

can be translated inside L?
Partial answers to Question V are given in [10,11].

VI. Let K,L ∈ Kn such that Vn(L) > 0, and let 1 � k � n − 1. Suppose that the orthogonal
projection Lξ contains a congruent copy of the corresponding projection Kξ (under some
rigid motion) for each ξ ∈ G(n, k).
Under what simple (easy to state, easy to verify) additional conditions does it follow that L

contains a congruent copy of K?
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