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EVEN VALUATIONS ON CONVEX BODIES

DANIEL A. KLAIN

Abstract. The notion of even valuation is introduced as a natural gener-
alization of volume on compact convex subsets of Euclidean space. A recent
characterization theorem for volume leads in turn to a connection between even
valuations on compact convex sets and continuous functions on Grassmanni-
ans. This connection can be described in part using generating distributions
for symmetric compact convex sets. We also explore some consequences of
these characterization results in convex and integral geometry.

Recent interest in volume as a valuation on compact convex sets stems from
Hilbert’s Third Problem, which is actually an ancient problem recast in modern
terms. Hilbert asked if two polytopes P and Q can be each cut into a finite number
of pieces P1, . . . , Pm and Q1, . . . , Qm with each Pi congruent to Qi by a rigid
Euclidean motion, provided that P and Q have the same volume [18]. This question
was answered in the negative by Max Dehn [2, 4, 29], who found a functional on
polytopes that is invariant under dissections over rigid motions, while varying in
value among polytopes of equal volume. In other words, the Dehn invariant is a
“simple rigid motion invariant valuation” on polytopes that is not equal to volume
(under any normalization).

Dehn’s solution left open the question of exactly what conditions on P and Q
imply equidissectability over the group of rigid motions, although this problem
was solved by Hadwiger in the case where only translations (and no rotations nor
reflections) are permitted (see [2, 16, 17, 26, 29]).

In the course of studying this and related problems, Hadwiger discovered a char-
acterization of Euclidean volume as a continuous rigid motion invariant simple
valuation on compact convex sets, that is, a continuous rigid motion invariant val-
uation that vanishes on convex sets of less than full dimension. This result led in
turn to a complete characterization of all continuous rigid motion invariant valu-
ations on compact convex sets in Rn as consisting of a real (n + 1)-dimensional
vector space spanned by the intrinsic volumes (or Quermassintegrals) [16] (also
[20, 21, 31]). Since many standard functionals and integral operators can be inter-
preted as invariant valuations (such as intrinsic volumes, mean projections, Crofton
and kinematic formulas), what came to be known as Hadwiger’s characterization
theorem proved to be a valuable tool for generating quick and effortless proofs of
many formulas and equations in integral geometry.

Unfortunately Hadwiger’s original proof was long and difficult [16]. While seek-
ing a shorter proof of Hadwiger’s volume characterization, the author discovered
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that in fact fewer conditions were sufficient to characterize volume than Hadwiger
originally required. In particular, complete rigid motion invariance is not necessary;
it is sufficient for a continuous simple valuation to be invariant under translations
and reflection through the origin [20, 21]. The sufficiency of these invariance con-
ditions to characterize volume motivates in turn the study of even valuations.

In the present work we pursue this line, begun in [20], by establishing a connec-
tion between continuous even valuations on compact convex sets and continuous
functions on Grassmannians. We also examine some consequences to convex and
integral geometry.

List of symbols

Rn n-dimensional Euclidean space
Sn−1 unit sphere in Rn, centered at o
Kn set of compact convex subsets of Rn

Kn
c set of symmetric sets in Kn

hK support function of K
K + L Minkowski sum of K and L
Vn(K) n-volume of K ∈ Kn

Vm m-th intrinsic volume
Polycon(n) set of finite unions of compact convex sets
dS(K, ·) Aleksandrov-Fenchel-Jessen measure of K
Vn(K1, . . . , Kn) mixed n-volume of K1, . . . , Kn ∈ Kn.
An space of continuous, translation invariant, even valuations

on Kn

An
m space of valuations in An that are homogeneous of degree m

G(n, m) set of m-dimensional subspaces of Rn

Par(n) set of finite unions of parallelotopes (w.r.t. a given basis)
u line segment with endpoints u and −u
Un space of continuous translation invariant valuations on Par(n)
Un

m space of valuations in Un that are homogeneous of degree m
∧m(Rn) space of m-th exterior tensors over Rn

Φ injective mapping from valuations to generating functions
(or vectors)

Xµ generating vector for a valuation µ
∧(Rn) exterior (Grassmann) algebra over Rn

C(G(n, m)) space of continuous real-valued functions on G(n, m)
KE set of compact convex subsets of E
fµ generating function of a valuation µ
C(Sn−1) space of continuous real-valued functions on Sn−1

D(Sn−1) space of smooth functions on Sn−1

E(Sn−1) space of functions on Sn−1 having generating measures
ρf generating measure of a function f
ρK generating measure of a convex set K
TK generating distribution of a convex set K (on Sn−1)
T m

K analogous functional to TK for functions on G(n, m).
Fn

m domain of T m
K

〈E, F 〉 cosine of the angle between subspaces E and F
K|E orthogonal projection of K onto E

T̃ m
K an alternative version of T m

K

En
m space of functions on G(n, m) having generating measures;

domain of T̃ m
K

µf valuation on Kn induced by f under T̃ m
K

Mod(n) set of all subspaces of Rn

C(Mod(n)) space of continuous real-valued functions on Mod(n)
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1. Even valuations

Denote by Kn the collection of all compact convex subsets of Rn, that is, n-
dimensional Euclidean space. The elements of Kn are also known as convex bodies.
A convex body K is centered about the origin if K is symmetric under reflection
through the origin, that is, if K = −K. A convex body K is symmetric or centered
if there exists a translate of K that is centered about the origin. Denote by Kn

c the
collection of all symmetric convex bodies in Kn.

A convex body K ∈ Kn is determined uniquely by its support function, hK :
Sn−1 −→ R, defined by hK(u) = maxx∈K{x · u}, where · denotes the standard
inner product on Rn.

For all K, L ∈ Kn and all λ ≥ 0, the Minkowski sum K + λL is defined by

K + λL = {x + λy : x ∈ K and y ∈ L},
and has support function hK+λL = hK + λhL.

A sequence of convex bodies Ki is said to converge to K in the Hausdorff topology
if, for all ε > 0, there exists N > 0 such that

Ki ⊆ K + εB and K ⊆ Ki + εB

for all i > N . In this case we write Ki −→ K.
A function µ : Kn −→ R is called a valuation on Kn if µ(∅) = 0, where ∅ is the

empty set, and if

µ(K ∪ L) = µ(K) + µ(L)− µ(K ∩ L),(1)

for all K, L ∈ Kn such that K ∪ L ∈ Kn as well.
The condition that K ∪L be convex may seem excessively restrictive. However,

any continuous valuation µ on Kn can be extended in a unique way to the lattice
Polycon(n) of polyconvex subsets of Rn, that is, the set of all finite unions of compact
convex subsets of Rn. (The lattice of polyconvex sets is also known as the convex
ring.) The extension is constructed as follows: Given a valuation µ on Kn, and a
set M ∈ Polycon(n), express M as a finite union of convex bodies,

M = K1 ∪ · · · ∪Km,(2)

and then compute µ(K1 ∪ · · · ∪ Km) by iterating (1). If µ is continuous, this
extension of µ turns out to be well-defined [14]. In the arguments that follow, this
unique extension of µ shall allow us to consider the value of µ on all finite unions
of convex bodies, whether or not such unions are actually convex.

Note that a valuation µ on Kn is said to be continuous if, for any convergent
sequence Ki −→ K in Kn,

lim
i→∞

µ(Ki) = µ(K).

Although a given valuation may have a well-defined extension to all of Polycon(n),
we do not consider convergent sequences of non-convex sets when testing a valuation
µ for continuity.

A valuation µ on Kn is translation invariant if µ(K + x) = µ(K) for all x ∈ Rn.
A valuation µ on Kn is called even if µ(−K) = µ(K) for all K. If a valuation µ
vanishes on all convex bodies of dimension strictly less than n, then µ is called a
simple valuation. Finally, a valuation µ on Kn is said to be homogeneous of degree
m, if

µ(αK) = αmµ(K),
for all α ≥ 0 and all K ∈ Kn.
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Denote by An the vector space of continuous, translation invariant, even valua-
tions on Kn, and let An

m denote the subspace of valuations in An that are homo-
geneous of degree m.

A well-known example of a continuous translation invariant even valuation on
Kn is the volume Vn. Another example is surface area.

It turns out that the intrinsic volumes V0, V1, . . . , Vn are continuous rigid motion
invariant valuations on Kn (see [23, 27], [31, p. 290]). The intrinsic volumes Vi give
invariant extensions of i-dimensional volume (on i-planes) to polyconvex subsets of
Rn, where n ≥ i. Denote by G(n, i) the set of all i-dimensional subspaces of Rn,
equipped with the invariant (Haar) measure ξi normalized so that

ξi(G(n, i)) =
(

n

i

)
ωn

ωiωn−i
,

where ωi is the i-dimensional volume of the unit ball in Ri. Denote by Vi the i-
dimensional volume in Ri. The i-volume Vi is extended to the i-th intrinsic volume
(also denoted Vi) on all of Kn by the mean projection formula:

Vi(K) =
∫

G(n,i)

Vi(K|E) dξi(E),

where K|E denotes the orthogonal projection of K onto the subspace E. Evidently
the intrinsic volume Vi is homogeneous of degree i.

The valuation V0, which takes the value 1 on all non-empty compact convex
sets, extends to the Euler characteristic on the lattice of polyconvex sets (see, for
example, [21, 27, 31]).

Up to a constant factor, the volume Vn is the only continuous translation invari-
ant even simple valuation on Kn. Specifically, we have the following result [20]:

Theorem 1.1. Suppose that µ is a simple valuation on Kn that is continuous and
translation invariant. Then there exists c ∈ R such that µ(K) + µ(−K) = cVn(K),
for all K ∈ Kn.

The relevance of even valuations is demonstrated by the following equivalent
statement of Theorem 1.1.

Theorem 1.2 (Volume Characterization Theorem). Suppose that µ is a simple
valuation on Kn that is continuous, translation invariant and even. Then there
exists c ∈ R such that µ(K) = cVn(K), for all K ∈ Kn.

Theorem 1.2 fails for valuations that are not even. For example, let ∆ denote
the equilateral triangle in R2 with vertices at the points (0, 0), (1, 0), (1

2 ,
√

3
2 ). The

valuation τ on K2 defined by

τ(K) = V2(K + ∆)− V2(K + (−∆))(3)

is continuous, translation invariant, and vanishes on convex bodies of dimension
one. (Here V2 denotes area in R2.) Moreover τ vanishes on all centered bodies.
But τ(K) 6= 0 if K is not centered. This follows from the Brunn-Minkowski in-
equality [31, p. 309]. Alternatively, an easy direct calculation shows that τ(∆) 6= 0.
Consequently τ 6= cV2 for any c ∈ R.

In a similar vein, a valuation µ is defined to be odd if µ(−K) = −µ(K) for all
K ∈ Kn. In [32] Schneider proved the following theorem:
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Theorem 1.3. Suppose that µ is a simple valuation on Kn that is continuous,
translation invariant and odd. Then there exists a continuous odd function g :
Sn−1 −→ R such that

µ(K) =
∫

Sn−1
g(u) dS(K, u)

for all K ∈ Kn.

Here Sn−1 denotes the unit sphere in Rn, and S(K, ·) denotes the Aleksandrov-
Fenchel-Jessen measure associated with K.

Since every valuation on Kn can be expressed as the sum of an even valuation
and an odd valuation, Theorems 1.2 and 1.3 together characterize all continuous
translation invariant simple valuations on Kn.

The following theorem of McMullen [24, 26, 27] will be of use to us in the sequel.

Theorem 1.4. Let µ be a continuous translation invariant valuation on Kn, ho-
mogeneous of degree m. If K1, . . . , Kp ∈ Kn and λ1, . . . , λp > 0, then

µ(λ1K1 + · · ·+ λpKp) =
p∑

i1,... ,im=1

µ(Ki1 , . . . , Kim)λi1 · · ·λim ,(4)

where each symmetric coefficient µ(Ki1 , . . . , Kim) depends only on the bodies Ki1 ,
. . . , Kim . Moreover, each coefficient µ(Ki1 , . . . , Kim) is a continuous translation
invariant function of the bodies Ki1 , . . . , Kim .

An important special case of Theorem 1.4 is Minkowski’s expansion of the volume
of a Minkowski linear combination: If K1, . . . , Kp ∈ Kn and λ1, . . . , λp > 0, then
the volume Vn is a homogeneous polynomial in the positive variables λ1, . . . , λp;
that is,

Vn(λ1K1 + · · ·+ λpKp) =
p∑

i1,... ,in=1

Vn(Ki1 , . . . , Kin)λi1 · · ·λin .(5)

The following theorem of McMullen implies that in order to understand and char-
acterize translation invariant valuations, it is sufficient to consider the translation
invariant homogeneous valuations [24].

Theorem 1.5. Let µ be a continuous translation invariant valuation on Kn. Then
there exist unique continuous translation invariant valuations µ0, µ1, . . . , µn, such
that each µi is homogeneous of degree i, and such that

µ(K) =
n∑

i=0

µi(K)

for all K ∈ Kn.

Note that if µ is even, then
n∑

i=0

µi(−K)εi = µ(−εK) = µ(εK) =
n∑

i=0

µi(K)εi,

for all ε > 0. It follows that if µ is even, so are the homogeneous component
valuations µi.

It also follows easily from Theorem 1.5 that if µ is translation invariant and
homogeneous of degree m, then m must be an integer. In particular, if µ(K) 6= 0
for some set K ∈ Kn, then necessarily m ∈ {0, 1, . . . , n}. Said differently, if µ is
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translation invariant and homogeneous of degree m > n, then µ(K) = 0 for all
K ∈ Kn.

While Theorems 1.4 and 1.5 are well-known for more general cases (i.e. transla-
tion invariant homogeneous valuations on compact polytopes) [26, 27], the following
is true in general only for even valuations:

Proposition 1.6. Suppose that µ ∈ An
n. Then there exists c ∈ R such that µ(K) =

cVn(K) for all K ∈ Kn.

Proof. Since µ is homogeneous of degree n, the valuation µ restricts to the zero
valuation on (n − 1)-dimensional subspaces by Theorem 1.5. In other words, µ is
simple. Proposition 1.6 then follows immediately from Theorem 1.2.

For K, L ∈ Kn it is well-known that the mixed volume Vn(K, . . . , K, L) satisfies
the equation

nVn(K, . . . , K︸ ︷︷ ︸
n−1

, L) =
∫

Sn−1
hL(u) dS(K, u).(6)

See, for example, [31, p. 275].

Theorem 1.7. Suppose that µ ∈ An, and suppose that µ vanishes in dimensions
less than n−1. Then there exists c ∈ Rn and sequences {Lj}, {Mj} of convex bodies
centered at the origin such that

µ(K) = cVn(K) + lim
j→∞

[Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Lj)− Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Mj)]

for all K ∈ Kn.

Proof. For each hyperplane E ∈ G(n, n− 1), let KE denote the set of all compact
convex subsets of E. Since the restriction of µ to KE satisfies the conditions of
Theorem 1.2 (in dimension n− 1), there exists cE ∈ R such that

µ(K) = cEVn−1(K),

for all K ∈ KE .
Define f : Sn−1 −→ R by the equation

f(u) =
ncu⊥

2
.

Because the function f is continuous and even, there exists a sequence of pairs
of convex bodies {Lj, Mj} centered about the origin such that the sequence of
differences of support functions {hLj − hMj} converges uniformly to f (see [30] or
[31, p. 45]).

For j > 0 let µj(K) = Vn(K, . . . , K, Lj) − Vn(K, . . . , K, Mj). Then for K ∈
Ku⊥ , the surface measure dS(K, ·) is concentrated at the points u,−u ∈ Sn with
mass Vn−1(K) at each point. Since Lj, Mj are centered at the origin, we have
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hLj(u) = hLj(−u), and similarly for hMj . We therefore apply (6) to compute:

µj(K) = Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Lj)− Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Mj)

=
1
n

Vn−1(K)(2hLj(u)− 2hMj (u))

→ Vn−1(K)
(

2f(u)
n

)
as j →∞

= cu⊥Vn−1(K)
= µ(K).

For K ∈ Kn define η(K) = limj→∞ µj(K). The valuation η satisfies the equa-
tions

η(K) = lim
j→∞

[Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Lj)− Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Mj)] =
∫

Sn−1
f(u) dS(K, u).

Therefore, η is continuous, translation invariant, even, and

η(K) = µ(K)

for all K of dimension less than n. It follows that the valuation µ− η satisfies the
conditions of Theorem 1.2, so that there exists c ∈ R such that µ(K) − η(K) =
cVn(K) for all K ∈ Kn. Thus

µ(K) = cVn(K) + lim
j→∞

[Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Lj)− Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Mj)].

The following corollary is actually a special case of a theorem of McMullen [25].

Corollary 1.8. Suppose that µ ∈ An
n−1. Then there exist sequences {Lj}, {Mj} of

centered convex bodies such that

µ(K) = lim
j→∞

[Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Lj)− Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Mj)]

for all K ∈ Kn.

Proof. Theorem 1.7 implies that there exists c ∈ Rn and sequences {Lj}, {Mj} of
centered convex bodies such that

µ(K)− lim
j→∞

[Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Lj)− Vn(K, . . . , K︸ ︷︷ ︸
n−1

, Mj)] = cVn(K)(7)

for all K ∈ Kn. Since µ ∈ An
n−1, the left hand expression in (7) gives a valuation

homogeneous of degree n− 1. It follows that c = 0.

Corollary 1.8 can be used to show that every centered generalized convex body
has a continuous even support function (see [22]).

In [9], Goodey and Weil give a similar classification for continuous valuations
that are homogeneous of degree 1.
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Theorem 1.9. Suppose that µ is a continuous translation invariant valuation on
Kn. Then µ is homogeneous of degree 1 if and only if there exist sequences {Lj}∞j=0

and {Mj}∞j=0 in Kn such that, for all δ > 0,

µ(K) = lim
j→∞

[Vn(Lj , . . . , Lj︸ ︷︷ ︸
n−1

, K)− Vn(Mj , . . . , Mj︸ ︷︷ ︸
n−1

, K)](8)

uniformly for all convex bodies K ⊆ δB.

If we add the condition that µ is an even valuation, it is not difficult to show
that (8) holds with sequences {Lj} and {Mj} of symmetric bodies. For exam-
ple, if Lj and Mj are not symmetric, then replace them with the Blaschke sums
(1/2)(Lj # (−Lj)) and (1/2)(Mj # (−Mj)). If µ is even, this substitution will not
change the limit in (8). (For a discussion of Blaschke sums, see [31, p. 394] or [5,
p. 122].)

Theorems 1.5, 1.7, and 1.9 together give a characterization of all continuous
translation invariant even valuations on Kn, for n = 1, 2, 3. However, the situation
becomes more complicated for dimension n ≥ 4, in part because of complications
in the structure of the Grassmannian G(n, k) for n ≥ 4 and 2 ≤ k ≤ n − 2 (as
compared to G(n, 1) ∼= G(n, n − 1) and Sn−1). In order to shed some light on
these intermediate cases, we shall examine a connection between even valuations
and functions on Grassmannians. In preparation for this, it will be useful first to
understand the behavior and characterization of even valuations on a special class
of compact convex sets, namely, the lattice of finite unions of parallelotopes in a
fixed frame.

2. Valuations on parallelotopes

Choose an ordered basis of unit vectors u1, . . . , un for Rn, which shall remain
fixed throughout this section, and let Par(n) denote the family of sets that are
obtained by taking finite unions and intersections of parallelotopes with sides par-
allel to the vectors u1, . . . , un. Note that Par(n) is closed under finite unions and
intersections. This follows from the fact that the intersection of two parallelotopes
in Par(n) is a parallelotope. In other words, Par(n) is a distributive lattice under
the operations ∪ and ∩.

A valuation µ is said to be continuous on Par(n), provided that

µ(Pn) −→ µ(P )

whenever Pn, P are parallelotopes (and not just finite unions) and Pn −→ P in the
Hausdorff topology inherited from Kn.

The object of this section is to classify all continuous translation invariant ho-
mogeneous valuations defined on Par(n) (see also [21]).

When studying valuations on Par(n) we may restrict our attention to the gener-
ating set of parallelotopes in Rn with edges parallel to the coordinate axes. Specif-
ically, Groemer [14] (see also [21]) has shown that a valuation µ defined on paral-
lelotopes with edges parallel to the coordinate axes admits a unique extension to a
valuation on the lattice Par(n).

The restriction of the volume Vn to the lattice Par(n) is characterized by the
following theorem.

Theorem 2.1 (Volume Characterization for Par(n)). Let µ be a continuous trans-
lation invariant simple valuation defined on Par(n). Then there exists c ∈ R such
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that µ(P ) = cVn(P ) for all P ∈ Par(n); that is, µ is equal to the volume, up to a
constant factor.

Proof. For w ∈ Rn, denote by w the closed line segment with endpoints at w and
−w. Let P0 denote the unit parallelotope in Par(n), that is, the Minkowski sum
u1 + · · ·+ un. Define a continuous invariant valuation ν on Par(n) by the equation

ν(P ) = µ(P )− µ(P0)
Vn(P0)

Vn(P ).

Note that ν(P ) vanishes in dimensions less than n and that ν(P0) = 0. We need to
show that ν(P ) = 0 for all P ∈ Par(n).

If n = 1, then the result follows readily, since a parallelotope in R is merely a
closed line segment. Since ν vanishes on the closed line segment P0 = u1 and on
sets consisting of a single point, it follows from the inclusion-exclusion principle (1)
that ν must vanish on all closed line segments of rational length. It then follows
from continuity that ν vanishes on all closed line segments.

Suppose n > 1. Recall that ν is translation invariant and vanishes on lower
dimensions. Since ν(P0) = 0, a simple cut-and-paste argument shows that ν( 1

kP0) =
0 for all integers k > 0. Therefore, ν(P ) = 0 for every parallelotope P in Par(n)
having rational edge lengths. This follows from the fact that such a box can be
built up by stacking parallelotopes of the form 1

kP0 for some k > 0. The continuity
of ν now implies that ν(P ) = 0 for every parallelotope P in Par(n). It then follows
from the inclusion-exclusion principle that ν(P ) = 0 for all P ∈ Par(n).

For an alternative proof of Theorem 2.1, see also [15, p. 47].
A valuation µ on Par(n) is said to be homogeneous of degree k > 0 if

µ(αP ) = αkµ(P )

for all P ∈ Par(n) and all α ≥ 0. Using Theorem 2.1 we are now able to index
all continuous valuations on Par(n) that are invariant under translation and are
homogeneous of degree m.

Denote by Un the vector space of continuous translation invariant valuations on
Par(n), and let Un

m denote the subspace of valuations in Un that are homogeneous
of degree m. Recall that the exterior tensor space ∧m(Rn) is an

(
n
m

)
-dimensional

space, spanned by the basis:

{ui1 ∧ · · · ∧ uim : 1 ≤ i1 < · · · < im ≤ n}.(9)

Theorem 2.2. There exists a bijective linear map Φ : Un
m −→ ∧m(Rn), denoted

Φ(µ) = Xµ, such that for all 1 ≤ i1 < · · · < im ≤ n and all P ∈ Span{ui1 , . . . , uim},
µ(P ) = Xµ

{i1,... ,im}Vm(P ).

Here Xµ
{i1,... ,im} denotes the ui1∧· · ·∧uim -coordinate of the vector Xµ with respect

to the basis (9). We call Xµ the generating vector for the valuation µ.

Proof. For each linear coordinate subspace Ei1,... ,im = Span{ui1 , . . . , uim} let
Par(Ei1,... ,im) denote the set of all P ∈ Par(n) with P ⊂ Ei1,... ,im . Since the
restriction of µ to Par(Ei1,... ,im) satisfies the conditions of Theorem 2.1 (in dimen-
sion m), there exists ci1,... ,im ∈ R such that

µ(P ) = ci1,... ,imVm(P ),
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for all P ∈ Par(Ei1,... ,im). Define Xµ by the equation

Xµ
{i1,... ,im} = ci1,... ,im .

Then define Φ(µ) = Xµ.
Evidently Φ is a linear map. To see that Φ is injective, suppose Φ(µ) = 0.

Then µ = 0 when restricted to subspaces of dimension m, so that µ satisfies the
hypotheses of Theorem 2.1 in dimension m + 1. It follows that µ is equal to a
constant multiple of the (m + 1)-dimensional volume Vm+1 when restricted to a
subspace of dimension m + 1. But µ is homogeneous of degree m, while Vm+1 is
homogeneous of degree m + 1. Consequently, µ = 0 when restricted to subspaces
of dimension m + 1, so that µ satisfies the hypotheses of Theorem 2.1 in dimension
m + 2. After n−m iterations of this argument it follows that µ = 0 on Par(n).

To see that Φ is surjective, suppose X = (X{i1,... ,im}) ∈ ∧m(Rn). Define a
valuation ν on Par(n) by

ν(P ) =
∑

1≤i1<···<im≤n

X{i1,... ,im}Vm(αi1ui1 + · · ·+ αimuim),

for all P = α1u1 + · · ·+ αnun (up to translation). Evidently ν ∈ Un
m, and Φ(ν) =

X .

The following corollary follows immediately from the injectivity of the map Φ.

Corollary 2.3. Let µ, ν ∈ Un
m and suppose that µ(P ) = ν(P ) for all parallelotopes

P of dimension m. Then µ(P ) = ν(P ) for all P ∈ Par(n).

Remark. From the proof of Theorem 2.2 it is clear that if µ and ν are known to
agree on only one m-dimensional parallelotope P in each coordinate m-subspace
E, then µ = ν on all of Par(n).

While the proof of McMullen’s spectral theorem 1.5 is difficult for the general case
of valuations on polytopes (see [24]), an analogous result for continuous valuations
on the lattice Par(n) is easy to prove:

Theorem 2.4. Let µ be a continuous translation invariant valuation on Par(n).
Then there exist unique continuous translation invariant valuations µ0, µ1, . . . , µn,
such that each µm is homogeneous of degree m, and such that

µ(P ) =
n∑

m=0

µm(P )

for all P ∈ Par(n).

Proof. Let µ be a continuous translation invariant valuation on Par(n). Let Ej

denote the (n−1)-hyperplane in Rn spanned by the coordinate vectors u1, . . . , uj−1,
uj+1, . . . , un. The restriction of µ to Ej is a translation invariant valuation on
parallelotopes in Ej . Proceeding by induction, we may assume that, for all P ∈
Par(Ej),

µ(P ) =
n−1∑
m=0

µm(P ),

where µm is a homogeneous valuation on Par(Ej) of degree m. Thus µm is induc-
tively defined in each coordinate subspace Ej .
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To extend µm to all of Par(n), define

µm(P ) =
∑

1≤i1<···<im≤n

µm(αi1ui1 + · · ·+ αimuim),

for all parallelotopes P = α1u1 + · · · + αnun, and then extend µm to Par(n) by
inclusion-exclusion. The valuation

µ−
n−1∑
m=0

µm

vanishes on all lower dimensional parallelotopes in Par(n), since any such paral-
lelotope is contained in a hyperplane parallel to one of the hyperplanes Ej . By
Theorem 2.1,

µ−
n−1∑
m=0

µm = cnVn,

for some constant c ∈ R. Setting µn = cnVn gives

µ =
n∑

m=0

µm.

Denote by ∧(Rn) the exterior algebra (or Grassmann algebra) on Rn, that is, the
direct sum

⊕n
m=0 ∧m(Rn). Combining Theorem 2.4 with Theorem 2.2, we obtain

the following:

Theorem 2.5. There exists a bijective linear map Φ : Un −→ ∧(Rn), denoted
Φ(µ) = Xµ, such that

µ(P ) =
n∑

m=0

∑
1≤i1<···<im≤n

Xµ
{i1,... ,im}Vm(αi1ui1 + · · ·+ αimuim),

for all P = α1u1 + · · ·+ αnun (up to translation).

Here Xµ
{i1,... ,im} denotes the ui1 ∧· · ·∧uim -coordinate of the ∧m(Rn)-component

of the vector Xµ with respect to the basis (9) of ∧m(Rn). The proof of Theorem 2.5
is omitted.

3. The generating function of an even valuation

While some of the results of the previous sections are already known for more
general valuations, the results of this section are specific to even valuations. Theo-
rem 1.2 will lead to a fundamental connection between even valuations and contin-
uous functions on Grassmannians.

Let C(G(n, m)) denote the set of all real-valued continuous functions on the
Grassmannian G(n, m); i.e. the set of all m-dimensional vector subspaces of Rn.
For each subspace E ∈ G(n, m), let KE denote the set of all compact convex subsets
of E.

Theorem 3.1. There exists an injective linear map Φ : An
m −→ C(G(n, m)), de-

noted Φ(µ) = fµ, such that for all E ∈ G(n, m) and all K ∈ KE,

µ(K) = fµ(E)Vm(K).
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Note that, unlike the case of valuations on Par(n), we do not claim surjectivity
for the map Φ. The image of Φ in C(G(n, m)) is the topic of Section 4.

Proof. Suppose E ∈ G(n, m). Since the restriction of µ to KE satisfies the con-
ditions of Theorem 1.2 (or Prop. 1.6) in dimension m, there exists cE ∈ R such
that

µ(K) = cEVm(K),
for all K ∈ KE . Define fµ : G(n, m) −→ R by the equation

fµ(E) = cE ,

and define Φ(µ) = fµ.
Evidently Φ is a linear map. To see that Φ is injective, suppose Φ(µ) = 0.

Then µ = 0 when restricted to subspaces of dimension m, so that µ satisfies the
hypotheses of Theorem 1.2 in dimension m + 1. It follows that µ is equal to a
constant multiple of the (m + 1)-dimensional volume Vm+1 when restricted to a
subspace of dimension m + 1. But µ is homogeneous of degree m, while Vm+1 is
homogeneous of degree m + 1. Consequently, µ = 0 when restricted to subspaces
of dimension m + 1, so that µ satisfies the hypotheses of Theorem 1.2 in dimension
m + 2. After n−m iterations of this argument it follows that µ = 0 on Kn.

For µ ∈ An
m the function Φ(µ) is called the generating function of µ. Theorem 3.1

implies that a valuation µ ∈ An
m is uniquely determined by its generating function.

The following is an immediate corollary of Theorem 3.1.

Corollary 3.2. Suppose µ, ν ∈ An
m, and suppose that µ(K) = ν(K) whenever

dim(K) ≤ m. Then µ(K) = ν(K) for all K ∈ Kn.

Proof. Since µ and ν agree when restricted to any subspace of dimension m, it
follows that Φ(µ) = Φ(ν). Since Φ is injective (by Theorem 3.1), µ = ν.

In fact, we can do even better:

Corollary 3.3. Suppose µ, ν ∈ An
m, and suppose that µ(P ) = ν(P ) whenever P is

a parallelotope of dimension m. Then µ(K) = ν(K) for all K ∈ Kn.

Proof. If P has dimension m, then some translate of P lies in a subspace E ∈
G(n, m). By Theorem 3.1,

Φ(µ)(E)Vm(P ) = µ(P ) = ν(P ) = Φ(ν)(E)Vm(P ),

so that Φ(µ)(E) = Φ(ν)(E) for all E ∈ G(n, m). In other words, Φ(µ) = Φ(ν).
Since Φ is injective (by Theorem 3.1), it follows that µ = ν.

Remark. From the proof of Corollary 3.3 it is clear that if µ and ν are known to
agree on only one m-dimensional parallelotope P in each E ∈ G(n, m), then µ = ν
on all of Kn.

Theorem 3.1 and Corollary 3.2 fail for valuations that are not even. For example,
the valuation τ of (3) is continuous, translation invariant, homogeneous of degree
1, and restricts to zero on all 1-dimensional subspaces. But τ(K) 6= 0 if K is not
centered.

We continue this section with an application of Corollary 3.3 to mixed volumes.
For i ≤ n and K1, . . . , Ki ∈ Kn, denote by

Vi(K1|E, . . . , Ki|E)
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the (i-dimensional) mixed volume of the projections of K1, . . . , Ki onto an i-
dimensional subspace E of Rn.

Theorem 3.4. Let K1, . . . , Ki, K
′
1, . . . , K ′

i ∈ Kn
c . The following statements are

equivalent:
(i) Vi(K1|E, . . . , Ki|E) = Vi(K ′

1|E, . . . , K ′
i|E), for all E ∈ G(n, i).

(ii) Vn(K1, . . . , Ki, L1, . . . , Ln−i) = Vn(K ′
1, . . . , K ′

i, L1, . . . , Ln−i),
for all L1, . . . Ln−i ∈ Kn.

Compare to Lemma 2.1 of Chakerian and Lutwak in [3].

Proof. For E ∈ G(n, i) denote by CE⊥ the (n − i)-dimensional unit cube in the
subspace E⊥. Recall (or see in [31]) that

Vn(K1, . . . , Ki, CE⊥ , . . . , CE⊥︸ ︷︷ ︸
n−i

) =
(

n

i

)−1

Vi(K1|E, . . . , Ki|E).(10)

Therefore, (ii) implies (i).
To show that (i) implies (ii), define valuations ν1 and ν2 on Kn by

ν1(L) = Vn(K1, . . . , Ki, L, . . . , L)

and
ν2(L) = Vn(K ′

1, . . . , K ′
i, L, . . . , L)

for L ∈ Kn. Since the volume Vn is a valuation, it follows from (5) that ν1 and
ν2 are valuations. It also follows from elementary properties of Vn and the mixed
volumes that ν1 and ν2 are translation invariant, continuous, and homogeneous
of degree n − i. Since the bodies K1, . . . , Ki and K ′

1, . . . , K ′
i are symmetric, the

valuations ν1, ν2 are also even.
Meanwhile, the identities (10) imply that

ν1(CE⊥) =
(

n

i

)−1

Vi(K1|E, . . . , Ki|E),

for all E ∈ G(n, i), and similarly for ν2. It then follows from (i) that ν1(CE⊥) =
ν2(CE⊥) for all E ∈ G(n, i). In other words, we have ν1(CF ) = ν2(CF ) for all
F ∈ G(n, n − i). Corollary 3.3 now implies that ν1 = ν2. Since the mixed volume
Vn is linear with respect to Minkowski linear combinations in each parameter, (ii)
then follows for all L1, . . . Ln−i ∈ Kn.

It is well-known that if K, L ∈ Kn
c , then K = L up to translation if and only if

Vm(K|E) = Vm(L|E),

for all E ∈ G(n, m) (see for example [31]). Theorem 3.1 implies a similar assertion
for general even valuations.

Theorem 3.5. Suppose µ ∈ An
m, and let K, L ∈ Kn. If Vm(K|E) = Vm(L|E) for

all E ∈ G(n, m), then µ(K|E) = µ(L|E) for all E ∈ G(n, m).
If Φ(µ) is a non-zero function (almost everywhere) on G(n, m), then the converse

also holds.

Proof. This is an immediate consequence of the assertion of Theorem 3.1, namely,
that

µ(K|E) = Φ(µ)(E)Vm(K|E),
for all K ∈ Kn and all E ∈ G(n, m).
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Corollary 3.6. Suppose µ ∈ An
m, and suppose that Φ(µ) is a non-zero function

(almost everywhere) on G(n, m). Let K, L ∈ Kn
c . Then K = L up to translation if

and only if µ(K|E) = µ(L|E) for all E ∈ G(n, m).

Proof. Corollary 3.6 follows directly from Theorem 3.5 and the fact that when K
and L are symmetric we have K = L up to translation if and only if Vm(K|E) =
Vm(L|E) for all E ∈ G(n, m).

Remark. Corollary 3.6 does not hold for all (possibly non-symmetric) K, L ∈ Kn.

4. The generating distribution of a convex set

The conclusion of Theorem 3.1 motivates the following questions: Which func-
tions in C(G(n, i)) are generating functions of valuations in An

m? And how does one
reconstruct a valuation, given its generating function? In order to investigate the
range of the injective linear map Φ of Theorem 3.1, we recall a few facts about the
generating distribution of a convex body K, a construction due to Weil [33, 34, 35].

Denote by E(Sn−1) the space of all functions f : Sn−1 −→ R such that there
exists a signed measure ρf on Sn−1 with

f(u) =
∫

Sn−1
|u · v| dρf (v).

In this case ρf is called a generating measure of the function f .
Denote by C(Sn−1) the space of all continuous functions f : Sn−1 −→ R, and

denote by D(Sn−1) the space of all smooth even functions f : Sn−1 −→ R. Blaschke
[1] (see also [34, 35]) has shown that

D(Sn−1) ⊂ E(Sn−1) ⊂ C(Sn−1).

Recall that a compact convex set K is called a zonotope if K can be expressed
as a finite Minkowski sum of line segments. A set K is a zonoid if K can be
approximated by zonotopes in the Hausdorff topology on Kn. Zonoids having non-
empty interior are also sometimes called projection bodies. Indeed, a set K ∈ Kn

with non-empty interior is a zonoid if and only if there exists L ∈ Kn and a translate
K ′ of K such that hK′(u) = Vn−1(L|u⊥) for all u ∈ Sn−1. In this case we write
K ′ = ΠL and say that K ′ is the projection body of L.

If K ∈ Km
c and if there exist zonoids L, M such that K + L = M , then K is

called a generalized zonoid. If K is a generalized zonoid centered about the origin,
then its support function hK has a signed generating measure ρhK on Sn−1. In this
case, the generalized zonoid K is a zonoid if and only if its generating measure ρhK

is a positive measure. Generalized zonoids are of special interest because of the
following fact: If K is a symmetric compact convex set in Rn, then there exists a
sequence {Ki} of generalized zonoids such that Ki −→ K.

If K is a generalized zonoid centered about the origin, then hK ∈ E(Sn−1), and
we denote by ρK the generating measure of hK (instead of ρhK ). Note that if K is
a projection body, with K = ΠL for some convex body L, then ρK = S(L, ·), the
Aleksandrov-Fenchel-Jessen measure associated with L. For a thorough treatment
of zonoids, generalized zonoids, and projection bodies, see [5, 10, 31, 36].

In order to generalize the notion of generating measure to all symmetric compact
convex sets, we move to the level of distributions. If K is centered about the origin,
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denote by TK the distribution defined by

TK(f) = ρf (hK) =
∫

Sn−1
hK dρf ,(11)

for all f ∈ E(Sn−1). For K ∈ Kn
c , we define TK similarly, after first translating

the center of K to the origin. Weil [33, 34] has shown that TK is well-defined and
is continuous with respect to K. We call TK the generating distribution of the
compact convex set K. Evidently TK = ρK if K is a generalized zonoid, since in
this case

TK(f) = ρf (hK)

=
∫

Sn−1
hK(u) dρf (u)

=
∫

Sn−1

∫
Sn−1

|u · v| dρK(v) dρf (u)

=
∫

Sn−1
f(v) dρK(v)

= ρK(f).

The generating distribution TK is a fundamental tool for the construction of a
partial inverse to the mapping Φ : An

m −→ C(G(n, m)) of Theorem 3.1. For a
straightforward and elegant treatment of the theory of distributions, see [28]. See
also [19, pp. 33-53].

For u1, . . . , un ∈ Sn−1 denote by D(u1, . . . , un) the absolute value of determi-
nant of the collection (u1, . . . , un), that is, the volume of the parallelotope spanned
by u1, . . . , un. Denote by u1 ∧ · · · ∧ um the wedge product of the vectors ui in
the exterior tensor space ∧m(Rn). If u1 ∧ · · · ∧ um 6= 0, then we abuse notation
to denote by u1 ∧ · · · ∧ um the m-subspace spanned by the vectors ui. Finally
let U ⊆ Sn−1 × · · · × Sn−1 denote the (open dense) set of all linearly independent
m-tuples of unit vectors.

For g ∈ D(G(n, m)), define a function, g̃ : Sn−1 × · · · × Sn−1 −→ R by

g̃(u1, . . . , um) =
1

m!
g(u1 ∧ · · · ∧ um),(12)

for (u1, . . . , um) ∈ U and by setting g̃ = 0 otherwise. For w1, . . . , wm ∈ Rn −
{o}, we denote the value g̃(w1/|w1|, . . . , wm/|wm|) by g̃(w1, . . . , wm) for notational
convenience.

Recall that if K ∈ Kn
c , then there exists a sequence of generalized zonoids Ki,

having generating measures ρKi , such that Ki −→ K. Define

T m
K (g) = lim

i→∞

∫
Sn−1

· · ·
∫

Sn−1︸ ︷︷ ︸
m

g̃(u1, . . . , um)D(u1, . . . , um) dρKi · · ·dρKi ,

(13)

provided this limit exists and is well-defined (independently of the choice of sequence
{Ki} converging to K). Denote by Fn

m the space of all functions g : G(n, m) −→ R
such that the limit (13) is well-defined for all K ∈ Kn

c .

Remark. Note that, unlike the functional TK (on Sn−1), the linear functional T m
K (g)

is not necessarily a distribution in the traditional sense of the term, since there is
no reason to believe a priori that T m

K (g) is defined for all C∞ functions g. In some
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cases a problem may arise, since the product g̃D will not necessarily be smooth.
Determination of the domain and the precise meaning of the functional T m

K (g) is
the object of the remainder of this section.

Similarly, suppose K1, . . . , Km ∈ Kn
c with generalized zonoids {Kij} such that

lim
i→∞

Kij = Kj

for each j = 1, . . . , m. For g ∈ Fn
m define

TK1,... ,Km(g) = lim
i→∞

∫
Sn−1

· · ·
∫

Sn−1︸ ︷︷ ︸
m

g̃(u1, . . . , um)D(u1, . . . , um) dρKi1 · · ·dρKim .

(14)

Recall that for all generalized zonoids K, L we have ρK+L = ρK + ρL. An ele-
mentary combinatorial argument then implies that the limit (14) exists and that
TK1,... ,Km(g) is well-defined if and only if g ∈ Fn

m. Note that

TK,... ,K(g) = T m
K (g)

for all g ∈ Fn
m.

If K is a generalized zonoid with generating measure ρK , then

T m
K (g) =

∫
Sn−1

· · ·
∫

Sn−1︸ ︷︷ ︸
m

g̃(u1, . . . , um)D(u1, . . . , um) dρK · · ·dρK .(15)

In other words, the functional T m
K is a measure in this case. In particular, it follows

that if K is a generalized zonoid, then T m
K (g) is well-defined for all g ∈ C(G(n, m)).

More generally,

TK1,... ,Km(g) =
∫

Sn−1
· · ·

∫
Sn−1︸ ︷︷ ︸

m

g̃(u1, . . . , um)D(u1, . . . , um) dρK1 · · · dρKm ,

(16)

for generalized zonoids K1, . . . , Km.
Suppose that Z is a zonotope with center at the origin, that is, a Minkowski

sum Z = w1 + w2 + · · · + ws of line segments in Rn. Recall that w denotes the
closed line segment with endpoints at w and −w. Since the support function of a
line segment w is given by hw(u) = |u · w|, it follows that ρZ is a finite measure
with masses |wi| concentrated at points ±wi/|wi| in Sn−1. Denote by Zi1,... ,im the
(possibly degenerate) m-face of Z corresponding to the summands wi1 , . . . , wim .
Equation (15) implies that

T m
Z (g) =

∫
Sn−1

· · ·
∫

Sn−1︸ ︷︷ ︸
m

g̃(u1, . . . , um)D(u1, . . . , um) dρZ · · · dρZ

=
s∑

i1=1

· · ·
s∑

im=1

g̃(wi1 , . . . , wim)D(wi1/|wi1 |, . . . , wim/|wim |) |2wi1 | · · · |2wim |,

so that

T m
Z (g) =

s∑
i1=1

· · ·
s∑

im=1

g̃(wi1 , . . . , wim)Vm(Zi1,... ,im).(17)
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Recall that the m-volume Vm of a Minkowski linear combination of convex bodies
in Rm expands into a sum of mixed m-volumes according to (5). In particular,

Vm(Zi1,... ,im) = Vm(wi1 + · · ·+ wim) = m! Vm(wi1 , . . . , wim).

The identity (17) now becomes

T m
Z (g) =

s∑
i1=1

· · ·
s∑

im=1

m! g̃(wi1 , . . . , wim)Vm(wi1 , . . . , wim).(18)

The following proposition is a special case of a theorem of Weil [35].

Proposition 4.1. Let E ∈ G(n, m). If K ⊆ E is a zonoid and g ∈ C(G(n, m)),
then

T m
K (g) = g(E)Vm(K).

Proof. Suppose that Z ⊆ E is a zonotope, given by the Minkowski sum Z =
w1 + w2 + · · ·+ ws, for some w1, . . . , ws ∈ E. Then (17) implies that

T m
Z (g) =

s∑
i1=1

· · ·
s∑

im=1

g̃(wi1 , . . . , wim)Vm(Zi1,... ,im)

=
∑

1≤i1<···<im≤s

m! g̃(wi1 , . . . , wim)Vm(Zi1,... ,im)

= g(E)Vm(Z),

since the definition (12) implies that m! g̃(wi1 , . . . , wim) = g(E) if the vectors
{wi1 , . . . , wim} are independent and zero otherwise. Recall that any zonoid in
E can be approximated by zonotopes in E. The proposition then follows from the
continuity of T m

K and of the intrinsic volume Vm.

Proposition 4.1 can be generalized to include all symmetric compact convex sets
inside an m-dimensional subspace E. Theorem 3.1 and Proposition 4.1, along with
the identities (17) and (18), suggest the following theorem.

Theorem 4.2. Suppose that µ ∈ An
m, and let g denote the generating function of

µ; that is, g = Φ(µ). Then g ∈ Fn
m, with

µ(K) = T m
K (g),(19)

and

µ(K1, . . . , Km) = TK1,... ,Km(g),(20)

for all K, K1, . . . , Km ∈ Kn
c .

Here µ(K1, . . . , Km) denotes the mixed valuation generated by µ, as given by
Theorem 1.4.

Theorem 4.2 implies that if g : G(n, m) −→ R is known to be the generating
function of a valuation µ ∈ An

m, then g ∈ Fn
m; that is, T m

K (g) is well-defined for all
K ∈ Kn

c .

Proof. To begin, recall that for generalized zonoids K the value of T m
K (g) is defined,

since T m
K is a measure on the Grassmannian G(n, m).

Let u1, . . . , un be an independent set of unit vectors in Rn, and consider the
restriction of the valuation µ to the lattice Par(n) of (finite unions of) parallelotopes
with edges parallel to u1, . . . , un.
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Suppose P ∈ Par(n) is the parallelotope given by the Minkowski sum

P = α1u1 + · · ·+ αnun

of line segments. From (17) we then have

T m
P (g) =

n∑
i1=1

· · ·
n∑

im=1

g̃(ui1 , . . . , uim)Vm(αi1ui1 + · · ·+ αimuim).

Since Vm is a valuation in each m-dimensional coordinate subspace of Rn, it follows
that the functional T m

P (g) is a continuous translation invariant valuation on Par(n),
homogeneous of degree m. Moreover, if P ⊆ ui1 ∧ · · · ∧ uim , then

T m
P (g) = m! g̃(ui1 , · · · , uim)Vm(P ) = g(ui1 ∧ · · · ∧ uim)Vm(P ) = µ(P ).

It follows from Corollary 2.3 that T m
P (g) = µ(P ) for all parallelotopes in Par(n).

Since we could have chosen any basis u1, . . . , un for Rn with which to pursue
this argument, it follows that T m

P (g) = µ(P ) for all parallelotopes in Rn, regardless
of the basis of edges u1, . . . , un. Moreover, it now follows that

µ(P1, . . . , Pm) =
∫

Sn−1
· · ·

∫
Sn−1︸ ︷︷ ︸

m

g̃(u1, . . . , um)D(u1, . . . , um) dρP1 · · · dρPm ,

provided that P1, . . . , Pm are parallelotopes with respect to the same basis. In
particular, if w1, . . . , wm ∈ Rn, then

µ(w1, . . . , wm) =
∫

Sn−1
· · ·

∫
Sn−1︸ ︷︷ ︸

m

g̃(u1, . . . , um)D(u1, . . . , um) dρw1 · · · dρwm

= 2mg̃(w1, . . . , wm)D(w1, . . . , wm)
= g̃(w1, . . . , wm)Vm(w1 + · · ·+ wm)
= m! g̃(w1, . . . , wm)Vm(w1, . . . , wm).

For any zonotope Z = w1 + w2 + · · ·+ ws, we now have

µ(Z) = µ(w1 + w2 + · · ·+ ws)

=
s∑

i1=1

· · ·
s∑

im=1

µ(wi1 , . . . , wim)

=
s∑

i1=1

· · ·
s∑

im=1

m! g̃(wi1 , . . . , wim)Vm(wi1 , . . . , wim)

= T m
Z (g),

by (18). It then follows from continuity that T m
K (g) = µ(K) whenever K is a zonoid.

Since the set of zonoids in Kn is closed under Minkowski addition, the identity (20)
is also verified for zonoids.
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Now suppose that K is a generalized zonoid. That is, suppose K + L = M ,
where L and M are zonoids. Then we have

µ(K, K2, . . . , Km) = µ(M, K2, . . . , Km)− µ(L, K2, . . . , Km)

=
∫

Sn−1
· · ·

∫
Sn−1

g̃(u1, . . . , um)D(u1, . . . , um) dρMdρK2 · · · dρKm

−
∫

Sn−1
· · ·

∫
Sn−1

g̃(u1, . . . , um)D(u1, . . . , um) dρLdρK2 · · ·dρKm

=
∫

Sn−1
· · ·

∫
Sn−1

g̃(u1, . . . , um)D(u1, . . . , um) dρKdρK2 · · · dρKm .

In other words, the equation (20) holds if K1 = K is a generalized zonoid and
K2, . . . , Km are zonoids. Repeating this argument in each variable, we infer that
(20) holds when K1, . . . , Km are generalized zonoids. Setting K = K1 = · · · = Km

then proves (19) for generalized zonoids.
Recall that the set of generalized zonoids in Rn is dense in the set of all symmetric

compact convex sets. From the continuity of µ it now follows that

T m
K (g) = lim

Ki→K
T m

Ki
(g) = lim

Ki→K
µ(Ki) = µ(K),

is well-defined, where {Ki} is any sequence of generalized zonoids converging to
the symmetric compact convex set K. In other words, µ(K) = T m

K (g) for all
K ∈ Kn

c . Since T m
K (g) is defined for all K ∈ Kn

c , it follows that g ∈ Fn
m. The

same continuity argument also verifies the mixed valuation expression (20) for all
symmetric K1, . . . , Km, thereby completing the proof of Theorem 4.2.

For subspaces E, F ∈ G(n, m), denote by 〈E, F 〉 the cosine of the “angle” be-
tween the m-subspaces E and F . The value of 〈E, F 〉 measures the distortion of
m-volume upon projecting orthogonally from E to F (or vice versa) and is equal to
the cosine of the (smaller) Euclidean angle between the straight lines in the exterior
tensor space ∧m(Rn) representing the subspaces E and F in Plücker coordinates.
If {u1, . . . , um} is an orthonormal basis for E and {w1, . . . , wm} is an orthonormal
basis for F , then

〈E, F 〉 = |det [(ui · wj)]|.
The following corollary was originally proven directly by Weil [35], but now

follows immediately from Theorem 4.2.

Corollary 4.3. For all E ∈ G(n, m) and all K, K1, . . . , Km ∈ Kn
c , the value

T m
K (〈E, F 〉) is well-defined. Moreover,

Vm(K|E) = T m
K (〈E, F 〉),(21)

and

Vm(K1|E, . . . , Km|E) = TK1,... ,Km(〈E, F 〉).(22)

Proof. Since Vm ∈ An
m, so is the valuation given by K 7→ Vm(K|E), where E is

a fixed m-dimensional subspace. Meanwhile if K ⊆ F for some F ∈ G(n, m),
then Vm(K|E) = 〈E, F 〉Vm(K). In other words, the map F 7→ 〈E, F 〉 is the
generating function for the valuation Vm( · |E) given by Theorem 3.1. It follows
from Theorem 4.2 that T m

K (〈E, F 〉) is well-defined. Equations (21) and (22) then
also follow from Theorem 4.2.
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5. An alternative approach

In view of Theorem 4.2, one is tempted to conjecture that An
m = {T m

(·)(g) : g ∈
Fn

m}, in other words, that the map Φ is a bijection between the set An
m of valuations

and the space Fn
m of functions. While this may be true, there remains to show that

the functional K 7→ T m
K (g) is indeed a valuation on all of Kn, for every g ∈ Fn

m.
Another question also arises: what exactly is Fn

m? What conditions must we
place on a function g ∈ C(G(n, m)) so that T m

K (g) is well-defined for all K ∈ Kn
c ?

It is not clear that T m
K (g) is defined for arbitrary symmetric K even when g is

smooth.
In order to investigate further the space Fn

m, we continue with yet another in-
terpretation of the generating distribution of a compact convex set K.

Denote by En
m the set of all functions f : G(n, m) −→ R such that

f(E) =
∫

G(n,m)

〈E, F 〉 dρf (F ),

for some (signed) measure ρf on G(n, m). In this case we call ρf a generating
measure for f .

Recall that if K is a compact convex subset of Rn and E is an m-dimensional
subspace of Rn, then the orthogonal projection K|E is a compact convex subset of
E. Moreover, the support function hK|E of K|E is given by the restriction of hK to
E. For fixed K ∈ Kn the function Vm(K|E) is called the m-th projection function
of K.

For all K ∈ Kn define the m-th generating distribution T̃ m
K on En

m by

T̃ m
K (f) =

∫
G(n,m)

Vm(K|E) dρf .

We shall see that, although the generating measure ρf is not necessarily unique
(there may be other measures that generate the function f), the value of T̃ m

K (f) is
well-defined independently of the choice of admissible ρf .

Note also that unlike TK and T m
K , the functional T̃ m

K is defined not only for sym-
metric K, but for all compact convex K. Evidently T̃ m

K is a continuous translation
invariant even valuation in the parameter K, homogeneous of degree m. This fol-
lows immediately from the fact that Vm(K|E) is such a valuation in the parameter
K for each fixed E. For f ∈ En

m, denote µf (K) = T̃ m
K (f).

Theorem 5.1. For f ∈ En
m, the valuation µf is well-defined. Moreover, the gener-

ating function of the valuation µf is the function f itself. In other words, Φ(µf ) =
f .

Proof. Suppose f ∈ En
m, and let ρf be a generating measure for f . If K ⊆ F for

some F ∈ G(n, m), then Vm(K|E) = 〈E, F 〉Vm(K). Therefore

µf (K) = T̃ m
K (f)

=
∫

G(n,m)

Vm(K|E) dρf

=
∫

G(n,m)

〈E, F 〉Vm(K) dρf

= Vm(K)f(E).
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It then follows from Theorem 3.1 that f is the generating function of µf .
Next, suppose ρf is another generating measure for f . Let µf denote the valu-

ation obtained by replacing ρf with ρf . The same argument implies that f is the
generating function of µf . In other words, the two valuations µf and µf have the
same generating function. Theorem 3.1 then implies that µf = µf . In other words,
the valuation µf is well-defined, independently of the choice of generating measure
ρ for a given function f ∈ En

m.

As one might hope, the two functionals T m
K and T̃ m

K coincide on En
m.

Theorem 5.2. For g ∈ En
m and K ∈ Kn

c ,

T̃ m
K (g) = T m

K (g).

In particular, En
m ⊆ Fn

m.

Proof. Suppose g ∈ En
m, and define µg(K) = T̃ m

K (g) for all K ∈ Kn. By Theo-
rem 5.1, we have Φ(µg) = g. It then follows from Theorem 4.2 that g ∈ Fn

m, and
that

T m
K (g) = µg(K) = T̃ m

K (g),

for all K ∈ Kn
c .

Remark. Note that f ∈ En
m if and only if the function f can be approximated by

linear combinations of absolute inner product functions F 7→ 〈E, F 〉. Consequently
an even valuation µ has generating function fµ ∈ En

m if and only if µ can be
approximated by linear combinations of projection functions K 7→ Vm(K|E). There
remains the interesting question of whether En

m = Fn
m; that is, are all continuous

even valuations (homogeneous of degree m) approximable by linear combinations
of projection functions? Or if not, do there exist easily verified conditions on µ that
determine whether fµ ∈ En

m?

Recent developments in the study of projection functions [7, 8] and generalized
(Grassmannian) cosine transforms [6, 11, 12, 13] may lead to interesting new exam-
ples of valuation generating functions, which may in turn shed light on the question
of how better to characterize the families En

m and Fn
m.

6. Even valuations revisited

McMullen’s spectral theorem for translation invariant valuations, Theorem 1.5,
leads to more general forms for Theorems 3.1, 4.2-5.2.

Denote by Mod(n) the set of all subspaces of Rn. The set Mod(n) consists of
the disjoint union

Mod(n) = {0} ]G(n, 1) ]G(n, 2) ] · · · ] {Rn}.
For f : Mod(n) −→ R, denote by f |G(n,m) the restriction of f to G(n, m).

Theorem 6.1. There exists an injective map Φ : An −→ C(Mod(n)), denoted
Φ(µ) = fµ, such that

µ(K) =
n∑

m=0

T m
K (fµ|G(n,m))

for all K ∈ Kn
c .
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Proof. Suppose µ ∈ An. By Theorem 1.5, there exist unique valuations µm ∈ An
m,

for m = 0, . . . , n, such that

µ(K) =
n∑

m=0

µm(K),

for all K ∈ Kn. In other words,

An = An
0 ⊕An

1 ⊕ · · · ⊕ An
n.

Since Theorem 3.1 gives an injective linear map Φ : An
m −→ C(G(n, m)) for each

m = 0, 1, . . . n, define Φ : An −→ C(Mod(n)) to be the direct sum of these compo-
nent maps. Evidently this extension of Φ remains injective.

If K ∈ Kn
c with generating distribution TK , then

µ(K) =
n∑

m=0

µm(K) =
n∑

m=0

T m
K (fµ|G(n,m)),

by Theorem 4.2 applied to each µm.

Once again the valuation µ is determined uniquely by its values on parallelotopes.

Theorem 6.2. Let µ, ν ∈ An, and suppose that µ(P ) = ν(P ) for all parallelotopes
P in Rn. Then µ(K) = ν(K) for all K ∈ Kn.

Proof. If P is a parallelotope, then
n∑

m=0

µm(P )εm =
n∑

m=0

µm(εP ) = µ(εP ) = ν(εP ) =
n∑

m=0

νm(P )εm,

for all ε > 0. It follows that µm(P ) = νm(P ) for all parallelotopes. By Corollary 3.3,
each µm = νm, so that µ = ν.

Remark. It is sufficient for the valuations µ, ν to agree on the dilates of a single
(full-dimensional) parallelotope in each orthogonal frame of Rn to imply that µ = ν.
The proof is similar to that of Theorem 6.2.
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