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VOLUME BOUNDS FOR SHADOW COVERING

CHRISTINA CHEN, TANYA KHOVANOVA, AND DANIEL A. KLAIN

Abstract. For n ≥ 2 a construction is given for a large family of compact
convex sets K and L in R

n such that the orthogonal projection Lu onto the
subspace u⊥ contains a translate of the corresponding projection Ku for every
direction u, while the volumes of K and L satisfy Vn(K) > Vn(L).

It is subsequently shown that if the orthogonal projection Lu onto the
subspace u⊥ contains a translate of Ku for every direction u, then the set
n

n−1
L contains a translate of K. It follows that

Vn(K) ≤
(

n

n− 1

)n

Vn(L).

In particular, we derive a universal constant bound

Vn(K) ≤ 2.942Vn(L),

independent of the dimension n of the ambient space. Related results are ob-
tained for projections onto subspaces of some fixed intermediate co-dimension.
Open questions and conjectures are also posed.

1. Introduction

Suppose that K and L are compact convex subsets of n-dimensional Euclidean
space. For a given fixed dimension 1 ≤ k < n, suppose that every k-dimensional
orthogonal projection (shadow) of K can be translated inside the corresponding
projection of L. How are the volumes of K and L related? Also, under what
additional conditions does it follow that L contains a translate of K?

Several aspects of this problem have been recently addressed in [19, 20, 21]. In
[20] it was shown that, despite the assumption on covering by all k-dimensional
projections, it may still be the case that K has greater volume than L.

It is also shown in [20] that if the orthogonal projection Lu of L onto the (n−1)-
dimensional subspace u⊥ contains a translate of the corresponding projection Ku

for every unit direction u ∈ R
n, then the volumes must satisfy Vn(K) ≤ nVn(L),

and that Vn(K) ≤ Vn(L) if L can be approximated by Blaschke combinations of
convex cylinders in R

n. Earlier results of Ball [2] imply that the covering condition
on projections (as well as the much weaker condition that projections of K have

smaller area) imply that the volume ratio Vn(K)
Vn(L) is bounded by a function that grows

with order
√
n as the dimension n becomes large. However, all specific examples

so far computed have suggested that the volume ratio is much smaller.
In this article we prove that the volume of K, while possibly exceeding that of

L, must still always satisfy

Vn(K) ≤
(

n

n− 1

)n

Vn(L).
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In particular, there is a universal constant bound

Vn(K) ≤ 2.942Vn(L),(1.1)

independent of the dimension n of the ambient space (see Section 5).
This constant bound will be seen as the direct consequence of the Main Theorem

of this article:

Main Theorem. Let K and L be compact convex sets in R
n. Suppose that, for

every unit vector u, the orthogonal projection Lu of L onto the subspace u⊥ contains
a translate of the corresponding projection Ku. Then there exists x ∈ R

n such that

K + x ⊆
(

n
n−1

)
L.

We also provide a substantial source of examples of compact convex sets K and
L such that the volume ratio is strictly greater than 1, adding to the special case
described in [20].

The background material for these results is described in Section 2. In Section 3
we describe a large family of convex bodies K and L such that each projection of
L contains a translate of the corresponding projection of K, while K has greater
volume.

In Section 4 we show that if the body L having larger projections is a simplex,
then there is a translate of K that lies inside a cap body of L having volume
n

n−1Vn(L). Section 5 combines the simplicial case with a containment theorem

of Lutwak [26] (see also [22, p. 54]) to prove the Main Theorem. The universal
constant bound (1.1) for volume ratios is then derived as a corollary.

Section 6 extends the results of the previous sections to the case in which (n−d)-
dimensional projections of L contain translates of (n − d)-dimensional projections
of K for some intermediate co-dimension 1 ≤ d ≤ n− 1. In Section 7 we pose some
open questions and conjectures.

This investigation is motivated in part by the projection theorems of Groemer
[15], Hadwiger [18], and Rogers [29]. In particular, if two compact convex sets have
translation congruent (or, more generally, homothetic) projections in every linear
subspace of some chosen dimension k ≥ 2, then the original sets K and L must
be translation congruent (or homothetic). Rogers also proved analogous results for
sections of sets with hyperplanes through a base point [29]. These results then set
the stage for more general (and often much more difficult) questions, in which the
rigid conditions of translation congruence or homothety are replaced with weaker
conditions, such as containment up to translation, inequalities of measure, etc.

Progress on the general question of when one convex body must contain a trans-
late (or a congruent copy) of another appears in the work of Gardner and Volčič
[13], Groemer [15], Hadwiger [16, 17, 18, 22, 31], Jung [3, 36], Lutwak [26], Rogers
[29], Soltan [35], Steinhagen [3, p. 86], Zhou [39, 40], and others (see also [11]). The
connection between projections or sections of convex bodies and the comparison of
their volumes also lies at the heart of each of two especially notorious inverse prob-
lems: the Shephard Problem [34] (solved independently by Petty [28] and Schneider
[32]) and the even more difficult Busemann-Petty Problem [5] (see, for example,
[1, 4, 8, 9, 12, 14, 23, 24, 25, 27, 37, 38]). A more complete discussion of these and
related problems (many of which remain open) can be found in the comprehensive
book by Gardner [11].

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



VOLUME BOUNDS FOR SHADOW COVERING 1163

2. Background

We will require several concepts and established results from convex geometry
in Euclidean space. Denote the n-dimensional Euclidean space by R

n, and let Kn

denote the set of compact convex subsets of Rn. The n-dimensional (Euclidean)
volume of a set K ∈ Kn will be denoted by Vn(K). If u is a unit vector in R

n,
denote by Ku the orthogonal projection of a set K onto the subspace u⊥. The
boundary of a compact convex set K will be denoted by ∂K.

Let hK : Rn → R denote the support function of a compact convex set K; that
is,

hK(v) = max
x∈K

x · v.

The standard separation theorems of convex geometry imply that the support func-
tion hK characterizes the body K; that is, hK = hL if and only if K = L. If Ki is
a sequence in Kn, then Ki → K in the Hausdorff topology if and only if hKi

→ hK

uniformly when restricted to the unit sphere in R
n.

If u is a unit vector in R
n, denote by Ku the support set of K in the direction

of u; that is,

Ku = {x ∈ K | x · u = hK(u)}.
If P is a convex polytope, then Pu is the face of P having u in its outer normal
cone.

Given two compact convex sets K,L ∈ Kn and a, b ≥ 0 denote

aK + bL = {ax+ by | x ∈ K and y ∈ L}.

An expression of this form is called a Minkowski combination or Minkowski sum.
Because K, L ∈ Kn, the set aK + bL ∈ Kn as well. Convexity of K also implies
that aK + bK = (a + b)K for all a, b ≥ 0. Support functions are easily shown to
satisfy the identity haK+bL = ahK + bhL.

The volume of a Minkowski combination satisfies a concavity property called the
Brunn-Minkowski inequality. Specifically, for 0 ≤ t ≤ 1,

(2.1) Vn((1− t)K + tL)1/n ≥ (1− t)Vn(K)1/n + tVn(L)
1/n.

If K and L have interior, then equality holds in (2.1) if and only if K and L are
homothetic; that is, iff there exist a ∈ R and x ∈ R

n such that L = aK + x. See,
for example, any of [3, 10, 33, 36].

The volume Vn(aK + bL) is explicitly given by Steiner’s formula:

(2.2) Vn(aK + bL) =
n∑

i=0

(
n

i

)
an−ibiVn−i,i(K,L),

where the mixed volumes Vn−i,i(K,L) depend only on K and L and the indices
i and n. In particular, if we fix two convex sets K and L, then the function
f(a, b) = Vn(aK+bL) is a homogeneous polynomial of degree n in the non-negative
variables a, b.

Each mixed volume Vn−i,i(K,L) is non-negative, continuous in the entries K
and L, and monotonic with respect to set inclusion. Note also that Vn−i,i(K,K) =
Vn(K). If ψ is an affine transformation whose linear component has determinant de-
noted detψ, then Vn−i,i(ψK,ψL) = | detψ|Vn−i,i(K,L). It also follows from (2.2)
that Vn−i,i(aK, bL) = an−ibiVn−i,i(K,L) for all a, b ≥ 0.
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If P is a polytope, then the mixed volume Vn−1,1(P,K) satisfies the classical
“base-height” formula

(2.3) Vn−1,1(P,K) =
1

n

∑
u⊥∂P

hK(u)Vn−1(P
u),

where this sum is finite, taken over all outer normals u to the facets on the boundary
∂P . These and many other properties of convex bodies and mixed volumes are
described in detail in each of [3, 33, 36].

The identity (2.3) implies the following useful containment theorem for simplices,
due to Lutwak [26].

Theorem 2.1. Let K ∈ Kn and let � be an n-dimensional simplex. Then �
contains a translate of K if and only if

Vn−1,1(�,K) ≤ Vn(�).

Proof. Since mixed volumes are translation invariant and monotonic with respect to
inclusion of sets, it is immediate that Vn−1,1(�,K) ≤ Vn(�) whenever � contains
a translate of K.

Conversely, suppose that Vn−1,1(�,K) ≤ Vn(�). Evidently � contains a trans-
late of K if K is a single point, so let us assume that K is not a single point, so
that Vn−1,1(�,K) > 0. (See, for example, [33, p. 277].)

Let α > 0 be maximal such that � contains a translate of αK. Without loss of
generality, assume αK ⊆ �. If αK does not meet every facet of �, then αK can
be translated (in the direction of the unit normal to the untouched facet) into the
interior of �, violating the maximality of α. Therefore, αK meets each facet of �,
so that

hαK(u) = h�(u)

for each unit normal u to facets of �. The formula (2.3) now yields

Vn−1,1(�, αK) =
1

n

∑
u⊥∂�

hαK(u)Vn−1(�u) =
1

n

∑
u⊥∂�

h�(u)Vn−1(�u) = Vn(�),

so that
αVn−1,1(�,K) = Vn−1,1(�, αK) = Vn(�) ≥ Vn−1,1(�,K).

Since Vn−1,1(�,K) > 0, it follows that α ≥ 1, so that � contains a translate of
K. �

Suppose that F is a family of compact convex sets in R
n. Helly’s Theorem

[3, 33, 36] asserts that if every n + 1 sets in F share a common point, then the
entire family shares a common point. In [26] Lutwak used Helly’s Theorem to prove
the following fundamental criterion for whether a set L ∈ Kn contains a translate
of another set K ∈ Kn.

Theorem 2.2 (Lutwak’s Containment Theorem). Let K,L ∈ Kn. Suppose that,
for every n-simplex � such that L ⊆ �, there is a vector v� ∈ R

n such that
K + v� ⊆ �. Then there is a vector v ∈ R

n such that K + v ⊆ L.

A proof of this containment theorem is also given in [22, p. 54]. We will make
use of this result in Section 5. Variations of Theorem 2.2 in which circumscrib-
ing simplices are replaced with inscribed simplices or circumscribing cylinders are
proved in [19] and [21] respectively.

Theorem 2.2 has the following immediate consequence.
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Proposition 2.3. Let K ∈ Kn. Then −nK contains a translate of K.

Proof. Suppose that � is an n-dimensional simplex such that −nK ⊆ �. It follows
that K ⊆ − 1

n�.
Meanwhile, since � is an n-dimensional simplex, the centroids of its facets are

the vertices of a translate of − 1
n�. It follows that � contains a translate of K.

Since this holds for every simplex� that contains −nK, it follows from Theorem 2.2
that −nK contains a translate of K. �

3. Interpolating with a simplex

If a convex body K in R
n has positive volume, then K has at least n+1 exposed

points [36, p. 89]. It follows from [19, Theorem 2.4] that there exists a simplex �
such that every projection �u contains a translate of the corresponding projection
Ku, while � does not contain a translate of K.

In general, under these shadow covering conditions, either of the bodies K or
� may possibly have larger volume. However, the next theorem asserts that there
is always a convex Minkowski combination of K and � whose projections can be
translated inside the projections of �, while at the same time having larger volume
than �. (See, for example, Figure 1.)

Theorem 3.1. Suppose that � is an n-simplex, and K is a compact convex set in
R

n such that the following assertions hold:

(i) Each projection �u contains a translate of the corresponding projection
Ku.

(ii) The simplex � does not contain a translate of K.

Then there exists t ∈ (0, 1) and a convex body L = (1 − t)K + t� such that the
following assertions hold:

(i)′ Each projection �u contains a translate of the corresponding projection
Lu.

(ii)′ Vn(L) > Vn(�).

Proof. Suppose that t ∈ [0, 1], that L = (1− t)K + t�, and that u is a unit vector.
We are given in (i) that �u contains a translate of Ku, so that Ku + w ⊆ �u for
some vector w ∈ u⊥. It follows that

Lu + (1− t)w = (1− t)Ku + t�u + (1− t)w

= (1− t)(Ku + w) + t�u

⊆ (1− t)�u + t�u

= �u,

so that �u contains a translate of Lu as well. This verifies (i)′ for all t ∈ [0, 1].
Next, we find a value of t so that (ii)′ holds. For t ∈ [0, 1], define

f(t) = Vn

(
(1− t)K + t�

)
.

Steiner’s formula (2.2) implies that f has the polynomial expansion

f(t) =

n∑
i=0

(
n

i

)
Vi,n−i(K,�)(1− t)itn−i,
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so that

f ′(t) =
n∑

i=0

(
n

i

)
Vi,n−i(K,�)[−i(1− t)i−1tn−i + (n− i)(1− t)itn−i−1].

It follows that

f ′(1) = nV0,n(K,�)− nV1,n−1(K,�) = nVn(�)− nV1,n−1(K,�).

From the symmetry of mixed volumes, we have V1,n−1(K,�) = Vn−1,1(�,K).
Since � does not contain a translate of K, Theorem 2.1 now implies that

V1,n−1(K,�) = Vn−1,1(�,K) > Vn(�),

so that f ′(1) < 0. It follows that f(t) > f(1) for some t ∈ (0, 1). Setting L =
(1− t)K + t� for this value of t completes the proof. �

Figure 1. A convex Minkowski combination of a regular tetrahe-
dron with a Euclidean ball.

Theorem 3.1, together with [19, Theorem 2.4], implies the following corollary.

Corollary 3.2. Suppose that K ∈ Kn has positive volume. Then there exists a
simplex � and t ∈ (0, 1) such that every projection of � contains a translate of the
corresponding projection of the body L = (1− t)�+ tK, while Vn(L) > Vn(�).

Let K0,K1 ∈ Kn, and suppose that every projection of K1 contains a translate
of the corresponding projection of K0, while K1 does not contain K0. If t ∈ (0, 1),
the interpolated body

Kt = (1− t)K0 + tK1

also satisfies these conditions. Theorem 3.1 motivates the following question: Under
what conditions on K0 and K1 does there exist t so that

Vn(Kt) > Vn(K1)?(3.1)

Theorem 3.1 implies there exists such a value t ifK1 is a simplex. On the other hand,
there are large classes of convex bodies K1 for which no such t exists. For example,
if K1 is a centrally symmetric body, then the Brunn-Minkowski inequality (2.1) can
be used to show that (3.1) will not hold (see, for example, [20]).

More generally, a set L ∈ Kn is called a cylinder body if L can be expressed as a
limit of Blaschke combinations of cylinders (see [20]). Here a cylinder refers to the
Minkowski sum in R

n of an (n− 1)-dimensional convex body with a line segment.
It turns out that if K1 is a cylinder body, then no t ∈ (0, 1) will satisfy (3.1), as

the next proposition explains.
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Proposition 3.3. Suppose that K0,K1 ∈ Kn such that every projection of K1

contains a translate of the corresponding projection of K0, while K1 does not contain
K0. If K1 is an (n− 1)-cylinder body, then

Vn(K0) ≤ Vn(Kt) ≤ Vn(K1)

for all t ∈ (0, 1).

Proof. If K1 is an (n− 1)-cylinder body, then

Vn(K0) ≤ Vn(K1) and Vn(Kt) ≤ Vn(K1),

by [20, Theorem 6.1]. It follows from the Brunn-Minkowski inequality (2.1) that,
for t ∈ (0, 1),

Vn(Kt)
1/n = Vn

(
(1− t)K0 + tK1

)1/n

≥ (1− t)Vn(K0)
1/n + tVn(K1)

1/n

≥ Vn(K0)
1/n,

so that Vn(K0) ≤ Vn(Kt) as well. �

4. When a body can hide behind a simplex

Denote by Ξ the n-dimensional simplex having vertices at {o, e1, . . . , en}, where
each ei is the i-th coordinate unit vector of Rn and o is the origin. The simplex Ξ
has outer facet unit normals given by

{−e1,−e2, . . . ,−en, v},
where v ∈ R

n is the unit vector with coordinates

v =
(

1√
n
, 1√

n
, . . . , 1√

n

)
.

Note also that each Ξei ⊆ Ξ, since Ξei is the (n − 1)-dimensional simplex having
vertices {o, e1, . . . , ei−1, ei+1, . . . , en}.

Let D denote the cap body formed by the convex hull of Ξ with the point p ∈ R
n

having coordinates

p =
(

1
n−1 ,

1
n−1 , . . . ,

1
n−1

)
.

See Figure 2. For each i let wi ∈ R
n denote the vector with coordinates

wi = (1, . . . , 1, 0, 1 . . . , 1) ,

where the 0 appears in the i-th coordinate. We can represent D as the intersection
of half-spaces

D =

(
n⋂

i=1

{x | ei · x ≥ 0}
)

∩
(

n⋂
i=1

{x | wi · x ≤ 1}
)
.

For each i, let Ei denote the line segment with endpoints at o and ei, and let
Ci = Ξei + Ei denote a prism (i.e. a cylinder with a simplicial base) that contains
Ξ. We can represent each Ci as the intersection of half-spaces

Ci =

(
n⋂

i=1

{x | ei · x ≥ 0}
)

∩ {x | ei · x ≤ 1} ∩ {x | wi · x ≤ 1}.
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Figure 2. Three views of the cap body D (3-dimensional case).

It follows that

D =
n⋂

i=1

Ci.

The next result is fundamental.

Theorem 4.1. Let K ∈ Kn, and suppose that, for every unit vector u, the projec-
tion Ξu contains a translate of the corresponding projection Ku. Then there exists
x ∈ R

n such that

K + x ⊆ D ⊆ n
n−1Ξ.

For vectors v, w ∈ R
n denote by v|w⊥ the orthogonal projection of the vector v

onto the subspace w⊥.

Proof. Translate K so that each coordinate plane e⊥i supports K on its positive
side. In other words, K is pushed into the corner of the positive orthant of Rn, so
that each

hK(−ei) = 0.

Let y ∈ K, with coordinates y = (y1, . . . , yn). The aforementioned repositioning of
K implies that each yi ≥ 0.

We are given that each projection Ξu contains a translate of Ku. In particular,
it follows that there exists

x = (0, x2, . . . , xn) ∈ e⊥1

such that Ke1 + x ⊆ Ξe1 . For each i > 1,

hKe1
(−ei) + x · (−ei) = hKe1

+x(−ei) ≤ hΞ(−ei) = 0.

Therefore, for each i > 1, we have

0 ≥ hKe1
(−ei) + x · (−ei) = hK(−ei) + x · (−ei) = 0− xi,

so that each xi ≥ 0.
Since the coordinates of x are non-negative, we have x · v ≥ 0, so that

hKe1
(v|e⊥1 ) = hKe1

(v) ≤ hKe1
(v) + x · v = hKe1

+x(v) ≤ hΞe1
(v) = hΞe1

(v|e⊥1 ),
while hKe1

(−ei) = 0 = hΞe1
(−e1) for each i > 1. In other words, Ke1 lies inside

each of the half-spaces of e⊥1 that define the simplex Ξe1 . It follows that

Ke1 ⊆ Ξe1 ,
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and we can use x = o. Moreover, this argument applies in each of the directions
e1, . . . , en, so that

Kei ⊆ Ξei ,

for each i.
Since Kej ⊆ Ξej for each j, the width of K is less than 1 in each coordinate

direction ei. Since Kei ⊆ Ξei as well, it follows that K ⊆ Ci. In other words,

K ⊆
n⋂

i=1

Ci = D.

The vertices of D are {o, e1, . . . , en, p}. Evidently, o, e1, . . . , en ∈ Ξ ⊆ n
n−1Ξ.

Since p has positive coordinates which sum to n
n−1 , we have p ∈ n

n−1Ξ as well. It
follows that D ⊆ n

n−1Ξ. �

It immediately follows from Theorem 4.1 that, if every projection Ξu contains a
translate of the corresponding projection Ku, then

Vn(K) ≤
(

n
n−1

)n

Vn(Ξ).(4.1)

Since
(

n
n−1

)n

decreases to e as n → ∞, this gives a universal upper bound on the

ratio
Vn(K)

Vn(Ξ)

under the condition of covering projections.
The next proposition will allow us to generalize these observations from the

special case of covering by the simplex Ξ to covering by an arbitrary n-simplex.

Proposition 4.2. Let K,L ∈ Kn. Let ψ : R
n → R

n be a non-singular linear
transformation. Then Lu contains a translate of Ku for all unit directions u if and
only if (ψL)u contains a translate of (ψK)u for all u.

This proposition implies that nothing is gained (or lost) by allowing more general
(possibly non-orthogonal) linear projections.

Proof. For S ⊆ R
n and a non-zero vector u, let LS(u) denote the set of straight

lines in R
n parallel to u and meeting the set S. The projection Lu contains a

translate Ku for each unit vector u if and only if, for each u, there exists vu such
that

(4.2) LK+vu(u) ⊆ LL(u).

But LK+vu(u) = LK(u) + vu and ψLK(u) = LψK(ψu). It follows that (4.2) holds
if and only if LK(u) + vu ⊆ LL(u), which, in turn, holds if and only if

LψK(ψu) + ψvu ⊆ LψL(ψu) for all units u.

Set

ũ =
ψu

|ψu| and ṽ = ψvu.

The relation (4.2) now holds if and only if, for each ũ, there exists ṽ such that

LψK(ũ) + ṽ ⊆ LψL(ũ),

which holds if and only if (ψL)ũ contains a translate of (ψK)ũ for all ũ. �
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Proposition 4.2 implies that the projection covering relation is preserved by in-
vertible affine transformations. Since every n-dimensional simplex can be expressed
as the affine image of the simplex Ξ, the volume inequality (4.1) continues to hold
when Ξ is replaced by any simplex whose projections cover those of K. In the next
section we will generalize this observation still further to an even larger class of sets.
However, the volume bound (4.1) can also be strengthened for the special case in
which the projections of K are covered by those of a simplex.

Theorem 4.3. Let K ∈ Kn and let T denote an n-dimensional simplex such that,
for every unit vector u, the projection Tu contains a translate of the corresponding
projection Ku. Then

Vn(K) ≤ n
n−1Vn(T ).

Proof. Without loss of generality (scaling as needed) we may assume that Vn(T ) =
Vn(Ξ), where Ξ is the special simplex defined at the beginning of this section. Ap-
plying volume-preserving affine transformations as needed, Proposition 4.2 implies
that we may also assume, without loss of generality, that T = Ξ. In this case the
proof of Theorem 4.1 implies that K lies inside the cap body D. An elementary
computation shows that

Vn(D) = n
n−1Vn(Ξ) =

n
n−1Vn(T ).

The theorem now follows from the monotonicity of volume. �

5. When one body can hide behind another

We now re-state and prove the Main Theorem of this article, which generalizes
some of the results of the previous section to the case of any two compact convex
sets K, L in R

n such that orthogonal projections of L contain translates of the
corresponding projections of K.

Theorem 5.1. Let K, L ∈ Kn. Suppose that, for every unit vector u, the projection
Lu contains a translate of the corresponding projection Ku. Then there exists x ∈
R

n such that
K + x ⊆ n

n−1L.

This theorem gives a sharp bound for containment by sets with covering pro-
jections. To see this, recall that if K ∈ Kn, the set −nK contains a translate
of K, by Proposition 2.3. Then consider the case in which K is the regular unit
edge n-simplex �, and L = (n − 1)(−�). For each direction u, the projection
−(n − 1)�u contains a translate of �u. Meanwhile, the smallest dilate of −� to
contain a translate of K = � is

n(−�) = n
n−1 (n− 1)(−�) = n

n−1L.

It follows that the coefficient n
n−1 in Theorem 5.1 cannot be improved.

Proof of Theorem 5.1. Let T be any n-simplex that contains L. Since each pro-
jection Lu contains a translate of Ku, it follows that each Tu contains a translate
of Ku. Let Ξ and D again denote the simplex and cap body defined in the pre-
vious section. Let ψ be an invertible affine transformation ψ such that ψT = Ξ.
By Proposition 4.2 each projection Ξu contains a translate of the corresponding
projection (ψK)u of the body ψK. By Theorem 4.1 there is x ∈ R

n such that

ψK + x ⊆ D ⊆ n
n−1Ξ.
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Since ψ is affine and invertible, it follows that the simplex

T̃ = n
n−1T

contains a translate of K. Meanwhile T̃ circumscribes n
n−1L if and only if T cir-

cumscribes L. So we have shown that every circumscribing simplex T̃ of n
n−1L

contains a translate of K. It follows from the Lutwak Containment Theorem 2.2
that n

n−1L contains a translate of K. �

Corollary 5.2. Let K, L ∈ Kn. Suppose that, for every unit vector u, the projec-
tion Lu contains a translate of the corresponding projection Ku. Then

Vn(K) ≤
(

n
n−1

)n

Vn(L).

Proof. By Theorem 5.1 there exists x ∈ R
n such that

K + x ⊆ n
n−1L,

so that

Vn(K) = Vn(K + x) ≤ Vn

(
n

n−1L
)
=

(
n

n−1

)n

Vn(L).

�

In particular, if each Lu contains a translate of Ku, then there is a constant
cn ∈ R independent of K,L ∈ Kn such that

Vn(K) ≤ cnVn(L),(5.1)

where cn → e as n → ∞.
The volume ratio bound (5.1) gives a substantial improvement over those previ-

ously known. In [20] circumscribing cylinders were used to show that cn ≤ n for all
n ≥ 1. A simple argument also implies that c2 = 3/2 is the best possible result in
dimension 2. More generally, an upper bound for cn can also be obtained using the
Rogers-Shephard inequality (also known as the difference body inequality [6, 30],
[33, p. 409]). This inequality asserts that, for K ∈ Kn,

Vn(K + (−K)) ≤
(
2n

n

)
Vn(K).(5.2)

If Vn(K) > 0, then equality holds in (5.2) if and only if K is a simplex.
To obtain a bound for cn using (5.2), suppose K,L ∈ Kn and that each Lu

contains a translate ofKu. It follows that the same relation holds for the Minkowski
symmetrals 1

2 (L + (−L)) and 1
2 (K + (−K)). Since these symmetrals are both

centrally symmetric it follows that

1
2 (K + (−K)) ⊆ 1

2 (L+ (−L)),

so that

Vn(K) ≤ Vn

(
1
2 (K + (−K))

)
≤ Vn

(
1
2 (L+ (−L))

)
≤ 1

2n

(
2n

n

)
Vn(L),

where the first inequality follows from the Brunn-Minkowski inequality (2.1) and
the final inequality is the Rogers-Shephard inequality (5.2). In dimension 2 this
yields the sharp bound c2 = 3/2, where equality is attained when L is a triangle
and K = 1

2 (L+ (−L)).
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However, for dimensions 3 and above, the Rogers-Shephard inequality no longer
gives the best possible bound for cn. More complicated results of Ball [2] (see
also [11, pp. 163-164]) imply that if the area of each projection of L exceeds the
corresponding area of each projection of K (a much weaker assumption than actual
covering of projections), then cn grows with order at most

√
n, with a universal

(weak) bound of

Vn(K) ≤ 1.1696
√
nVn(L).(5.3)

The bound (5.3) implies that c3 ≤ 2.026, whereas the Rogers-Shephard bound only
tells us that c3 ≤ 2.5. The inequality (5.3) still gives the best known bound for cn
when 3 ≤ n ≤ 6, although all known numerical evidence suggests these bounds can
be substantially improved (see also Section 7). Moreover, the bound (5.3) increases
without limit as n → ∞.

Theorem 5.1 (and Corollary 5.2) implies that if projections of L can cover pro-
jections of K, then cn is actually bounded by a universal constant independent
of the dimension n. The inequality (5.3) implies that

cn ≤ 1.1696
√
6 ≈ 2.865,

for n ≤ 6, but gives bounds larger than 3 and increasing without limit for n ≥ 7.
Meanwhile, Corollary 5.2 implies that

cn ≤
(

n
n−1

)n

≤
(

7
6

)7

≈ 2.942

for n ≥ 7, giving a universal volume ratio bound of cn ≤ 2.942 in all finite dimen-
sions. Possible improvements for this universal bound are discussed in Section 7.

6. Projections to intermediate dimensions

Theorem 5.1 generalizes easily to projections onto an arbitrary lower dimension.
In order to obtain similar asymptotic bounds (as the ambient dimension n → ∞),
these analogous results are best expressed in terms of the co-dimension of the
projections.

If ξ is a subspace of R
n and K ∈ Kn, we will denote by Kξ the orthogonal

projection of K onto ξ.

Theorem 6.1. Let K, L ∈ Kn, and let d ∈ {1, . . . , n− 1}. Suppose that, for every
(n− d)-dimensional subspace ξ ⊆ R

n, the projection Lξ contains a translate of the
corresponding projection Kξ. Then there exists x ∈ R

n such that

K + x ⊆ n
n−dL.

This theorem gives a sharp bound for containment by sets with covering projec-
tions. To see this, recall that if K ∈ Kn, then each (n− d)-dimensional projection
(n− d)(−K)ξ of (n− d)(−K) contains a translate of the corresponding projection
Kξ, by Proposition 2.3. Then consider the case in which K is the regular unit edge
n-simplex �, and L = (n− d)(−�). For each (n− d)-dimensional subspace ξ, the
projection (n−d)(−�)ξ contains a translate of �ξ. Meanwhile, the smallest dilate
of −� to contain a translate of K = � is

n(−�) = n
n−d (n− d)(−�) = n

n−dL.

It follows that the coefficient n
n−d in Theorem 6.1 cannot be improved.
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Proof of Theorem 6.1. The case of d = 1 is addressed by Theorem 5.1. If d > 1 let
u ∈ ξ⊥ be a unit vector, and let u denote the line through the origin spanned by
u. By Theorem 5.1, applied within the (n− d+ 1)-dimensional space ξ ⊕ u, there
is a vector y such that

Kξ⊕u + y ⊆ n−d+1
n−d Lξ⊕u.

In other words, for every (n−d+1)-dimensional subspace ξ′ ⊆ R
n the set n−d+1

n−d Lξ′

contains a translate of Kξ′ . After d iterations of this argument we obtain a vector
x such that

K + x ⊆ n
n−1 · · ·

n−d+2
n−d+1

n−d+1
n−d L = n

n−dL.

�

Corollary 6.2. Let K, L ∈ Kn, and let d ∈ {1, . . . , n−1}. Suppose that, for every
(n− d)-dimensional subspace ξ ⊆ R

n, the projection Lξ contains a translate of the
corresponding projection Kξ. Then

Vn(K) ≤
(

n
n−d

)n

Vn(L).

Proof. By Theorem 6.1 there exists x ∈ R
n such that

K + x ⊆ n
n−dL,

so that

Vn(K) = Vn(K + x) ≤ Vn

(
n

n−dL
)
=

(
n

n−d

)n

Vn(L).

�

Note that, after fixing the co-dimension d, we have

lim
n→∞

(
n

n−d

)n

= lim
n→∞

(
1 + d

n−d

)n

= lim
n→∞

(
1 + d

n−d

)d (
1 + d

n−d

)n−d

= ed.

Corollary 6.2 implies that, if Lξ contains a translate of Kξ for every (n − d)-
dimensional subspace ξ ⊆ R

n, then there is a constant cn,d ∈ R independent of
K,L ∈ Kn such that

Vn(K) ≤ cn,dVn(L),(6.1)

where cn,d → ed as n → ∞. It follows that, for fixed co-dimension d, the coefficient
cn,d can be replaced by a universal constant γd independent of the bodies K and
L and independent of the ambient dimension n.

7. Concluding remarks and open questions

Numerical evidence suggests that the volume ratio bounds in this article can
almost certainly be improved [7]. In Section 5 we showed that if each projection
Lu contains a translate of Ku, then

Vn(K) ≤ cVn(L),(7.1)

where c is a constant independent of the dimension n, and where c < 2.942. How-
ever, computational evidence suggests that c is much smaller.

If we fix the dimension n, then Theorem 4.3 gives a value of c = n
n−1 when the

body L is an n-simplex. On the other hand, previous work [20] implies that

Vn(K) ≤ Vn(L),
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in the special case where L is a cylinder, or even a cylinder body (that is, a limit
of Blaschke combinations of cylinders). This suggests that simplices may be the
worst case scenario for bodies with covering shadows, and motivates the following
conjecture:

Conjecture. Let K,L ∈ Kn and suppose that Lu contains a translate of Ku for
every unit vector u ∈ R

n. Then

Vn(K) ≤ n

n− 1
Vn(L).(7.2)

This conjecture is already known to be true in dimension 2 (indeed, we observed
in Section 5 that c2 = 3/2 is the best possible bound), but remains open for
dimensions n ≥ 3. If this conjecture is true, then the universal volume ratio constant
for all dimensions n ≥ 2 would satisfy c = 3/2.

Even if the conjecture above is proven correct, it remains to determine the best
upper bound for the ratio

cn =
Vn(K)

Vn(L)

in each dimension separately, for the conjectured bound (7.2) does not appear to be
sharp in dimensions n ≥ 3. Examples investigated so far suggest that the highest
volume ratio ought to occur when a suitable convex Minkowski combination of a
simplex � with the scaled reflection (n−1)(−�) hides behind the set (n−1)(−�).

A direct computation [7] shows that if � is a tetrahedron in R
3, and if

K =

(
1− 1 +

√
56

11

)
�+

(
1 +

√
56

11

)
(−2�) and L = −2�,(7.3)

then each projection Lu contains a translate of Ku (by Proposition 2.3, applied in
dimension 2), while

Vn(K)

Vn(L)
≈ 1.1634.

See Figure 3. We conjecture that the best possible bound for the volume ratio in

Figure 3. Two views of the Minkowski combination K of a reg-
ular tetrahedron with its reflection, as specified in (7.3).

dimension 3 is the value c3 ≈ 1.1634 occurring with the pair of bodies specified
in (7.3), and that analogous computations with simplices in R

n will yield the best
bounds for cn. However, these assertions remain conjectures at this point.
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Open Question 1. What is the best possible value for the volume ratio bound cn
for each particular dimension n ≥ 3? For cn,d?

Open Question 2. What is the best possible value for the universal volume ratio
bound c for all dimensions n ≥ 3? For γd?

Open Question 3. Let K,L ∈ Kn, and let d ∈ {1, . . . , n − 1}. Suppose that,
for each (n− d)-dimensional subspace ξ of Rn, the orthogonal projection Lξ of K
contains a translate of Kξ.

Under what simple (easy to state, easy to verify) additional conditions does it
follow that Vn(K) ≤ Vn(L)?

Some partial answers to the third question are given in [20]. There it is shown
that if Kξ can be translated inside Lξ for all (n − d)-dimensional subspaces ξ,
then K has smaller volume than L whenever L can be approximated by Blaschke
combinations of (n − d)-decomposable sets. Moreover, in [21] it is shown that,
for example, if projections of a right square pyramid Q contain translates of the
projections of a convex body K in R

3, then Q contains a translate of K (and so
certainly has greater volume). Since Q does not appear to be a cylinder body
(a class of bodies not yet easily characterized), it is likely that a larger class of
examples exist for bodies L whose volume exceeds that of any body K having
smaller shadows (up to translation).

The question of volume comparison was originally motivated by the following.

Open Question 4. Let K,L ∈ Kn, and let d ∈ {1, . . . , n − 1}. Suppose that,
for each (n− d)-dimensional subspace ξ of Rn, the orthogonal projection Lξ of K
contains a translate of Kξ.

Under what simple (easy to state, easy to verify) additional conditions does it
follow that L contains a translate of K?

Some partial answers to this question are given in [19] and [21].
All of these many questions can be re-phrased allowing for (specified subgroups

of) rotations (and reflections) as well as translations. However, the results obtained
so far rely on the observation that the set of translates of K that fit inside L, that
is, the set

{v ∈ R
n | K + v ⊆ L},

is itself a compact convex set in R
n. By contrast, the set of rigid motions of K that

fit inside L will lie in a more complicated Lie group. For this reason (at least) the
questions of covering via rigid motions may be more difficult to address than the
case in which only translation is allowed.
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