
Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #1A
Due September 20, 2018

Peer evaluation due October 2, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

Unless otherwise specified, (X, d) is a metric space.

1A. Let Y ⊆ X be a metric subspace of (X, d). Prove or disprove: A set B ⊆ Y is closed
in (Y, d) if and only if there exists a closed subset A of (X, d) for which A ∩ Y = B.

2A. Definition: Two metrics d1 and d2 on a set X are strongly equivalent if there exist
c1, c2 > 0 so that for all x, y ∈ X,

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y).

Let d1 and d2 be strongly equivalent metrics on the set X.

i. Let A ⊆ X. Prove that A is open with respect to d1 if and only if it is open with
respect to d2. (We say that the metrics have the same open sets.)

ii. Let (xn)n∈N ⊆ X and x ∈ X. Prove that limn→∞ xn = x with respect to d1 if and only
if limn→∞ xn = x with respect to d2.

iii. Give an example of two metrics on R that have the same open sets but are not strongly
equivalent.

3A. Definition: A subset A ⊆ X is disconnected if there exist non-empty subsets A1, A2 ⊆ X
such that A = A1 ∪A2 and A1 ∩A2 = A1 ∩A2 = ∅. The metric space (X, d) is disconnected
if X is a disconnected subset of (X, d).

i. Let A,U ⊆ X. Prove that if U is open and A ∩ U = ∅, then A ∩ U = ∅.

ii. Prove that A ⊆ X is disconnected if and only if there exist open sets U, V ⊆ X such
that A ∩ U 6= ∅, A ∩ V 6= ∅, A ⊆ U ∪ V , and A ∩ U ∩ V = ∅.

4A. Let (xn)n∈N, (yn)n∈N ⊆ X be Cauchy sequences. Prove that
(
d(xn, yn)

)
n∈N is a Cauchy

sequence in R. Using that R is complete, conclude that
(
d(xn, yn)

)
n∈N converges, even if

neither (xn)n∈N nor (yn)n∈N converge.

5A. Prove or disprove: A metric subspace of a separable metric space is separable.



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #1B
Due September 20, 2018

Peer evaluation due October 2, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

Unless otherwise specified, (X, d) is a metric space.

1B. Let Y ⊆ X be a metric subspace of (X, d). Prove or disprove: If A is a closed subset
of Y and Y is a closed subset of X, then A is a closed subset of X.

2B. Definition: Two metrics d1 and d2 on a set X are strongly equivalent if there exist
c1, c2 > 0 so that for all x, y ∈ X,

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y).

Let X = {0, 1}N, the space of all sequences x = (xn)n∈N ⊆ {0, 1}, and let

d1
(
x, y
)

=

{
0 if x = y

2−min{n∈N | xn 6=yn} if x 6= y
,

d2
(
x, y
)

=
∞∑
n=1

|xn − yn|
2n

.

Show that d1 and d2 are metrics on X and that they are strongly equivalent.

3B. Definition: A subset A ⊆ X is disconnected if there exist non-empty subsets A1, A2 ⊆ X
such that A = A1 ∪A2 and A1 ∩A2 = A1 ∩A2 = ∅. The metric space (X, d) is disconnected
if X is a disconnected subset of (X, d).

i. Let B ⊆ A. Denote by B
X

and B
A

the closure of B as a subset of the metric spaces

(X, d) and (A, d), respectively. Prove that B
A

= B
X ∩ A.

ii. Prove that A is disconnected as a subset of (X, d) if and only if (A, d) is a disconnected
metric space. (That is, the property of being disconnected is intrinsic, and hence so is
the property of being connected.)

4B. Let (xn)n∈N, (yn)n∈N ⊆ X. Prove that if limn→∞ xn = x and limn→∞ yn = y, then
limn→∞ d(xn, yn) = d(x, y).

5B. Let (xn)n∈N ⊆ X and x ∈ X. Prove or disprove: If (xn)n∈N is a Cauchy sequence and
a subsequence of (xn)n∈N converges to x, then (xn)n∈N converges to x.



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #2A
Due October 9, 2018

Peer evaluation due October 18, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

Unless otherwise specified, (X, d) is a metric space.

1A. Let A ⊆ X, and let 1A : X → {0, 1} be the indicator function of A. Prove that 1A is
continuous if and only if the set A is both open and closed in X.

2A. Let A ⊆ X be non-empty, and define d(·, A) : X → R by d(x,A) = infa∈A d(x, a). (For

this problem, you may use without proof that compact subsets of R contain their infimum and

supremum.)

i. Prove that d(·, A) is uniformly continuous.

ii. Suppose A is compact, and let x ∈ X. Prove that there exists a ∈ A such that
d(x,A) = d(x, a).

iii. Suppose A is compact. Prove that there exist a1, a2 ∈ A such that diam(A) = d(a1, a2).

3A. Definition: A metric space (X, d) is arcwise connected if for all x, y ∈ X, there exists
a continuous function γ : [0, 1]→ X with γ(0) = x and γ(1) = y.

i. Let (Y, dY ) be a metric space, and let f : X → Y be a continuous surjection. Show
that if X is arcwise connected, then so is Y .

ii. Define f : [0, 1] → R at x 6= 0 by f(x) = sin
(
1/x

)
and at x = 0 by f(0) = 0. Prove

that the graph of f , the set Γ(f) :=
{(
x, f(x)

)
∈ R2

∣∣ x ∈ [0, 1]
}
, is not arcwise

connected. (Hint: Can Γ(f) be the continuous image of a compact space?)

4A. Consider the metrics d1 and d∞ on R2 defined by d1
(
(x1, x2), (y1, y2)

)
= |x1−y1|+ |x2−

y2| and d∞
(
(x1, x2), (y1, y2)

)
= max(|x1 − y1|, |x2 − y2|). Sketch a picture of B1

(
(0, 0)

)
with

respect to both metrics. Show that the metric spaces (R2, d1) and (R2, d∞) are isometric
with the help of the function f(x1, x2) =

(
(x1 + x2)/2, (x1 − x2)/2

)
.

5A. Prove that if (X, d) is compact and f : X → X is an isometry, then f is a homeomor-
phism. You can follow the outline below if you wish.

i. Show first that it suffices to prove that f is surjective. (This means: supposing f is
surjective, finish the details of the proof.)

ii. For A ⊆ X and r > 0, denote by N(A, r) the minimal number of open balls of radius
r necessary to cover A. Prove that for all r > 0, N(X, r) = N(f(X), r).

iii. Prove that if f is not surjective, then there exists r > 0 for which N(f(X), r) <
N(X, r). (You may use without proof the result of Problem 2Bii on the reverse side.)



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #2B
Due October 9, 2018

Peer evaluation due October 18, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

Unless otherwise specified, (X, d) and (Y, dY ) are metric spaces.

1B. Let f, g : X → Y be continuous functions, and suppose A ⊆ X is dense. Prove that if
for all a ∈ A, f(a) = g(a), then for all x ∈ X, f(x) = g(x).

2B. Let A ⊆ X be non-empty, and define d(·, A) : X → R by d(x,A) = infa∈A d(x, a). (For

this problem, you may use without proof that compact subsets of R contain their infimum and

supremum.)

i. Prove that d(·, A) is uniformly continuous.

ii. Let x ∈ X. Prove that d(x,A) = 0 if and only if x ∈ A.

iii. Let A ⊆ X be compact and B ⊆ X be closed, and suppose A ∩ B = ∅. Prove that
there exists δ > 0 such that for all a ∈ A and b ∈ B, d(a, b) > δ. (Extra: Can either of

the assumptions “A is compact” or “B is closed” be removed?)

3B. Let A ⊆ X be connected, and let x ∈ X. Prove that the set A ∪ {x} connected if and
only if x ∈ A. Define f : [0, 1]→ R at x 6= 0 by f(x) = sin

(
1/x

)
and at x = 0 by f(0) = 0.

Show that the graph of f , the set Γ(f) :=
{(
x, f(x)

)
∈ R2

∣∣ x ∈ [0, 1]
}
, is connected. (You

may use without proof that any continuous image of the interval (0, 1] is connected.)

4B. In this problem, equip the product space X × Y with the metric dX×Y defined by
dX×Y

(
(x1, y1), (x2, y2)

)
= d(x1, x2) + dY (y1, y2). Let f : X → Y be a function, and suppose

(X, d) is compact. Prove that f is continuous if and only if the graph of f , the set

Γ(f) :=
{(
x, f(x)

)
∈ X × Y

∣∣ x ∈ X}
,

is a compact subset of (X×Y, dX×Y ). (Hint: Use the fact that a sequence
(
(xn, yn)

)
n∈N ⊆ X×Y

converges if and only if each of the sequences (xn)n∈N ⊆ X and (yn)n∈N ⊆ Y converge, and employ

sequential compactness.)

5B. Prove that if every continuous function X → R is uniformly continuous, then X is
complete. (Hint: Prove the contrapositive. If (xn)n∈N ⊆ X is a Cauchy sequence that does not

converge, show that the function f : X → R defined by f(x) = limn→∞ d(xn, x) is continuous and

positive. Use this function to furnish a continuous but not uniformly continuous function from X

to R.)



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #3A
Due October 23, 2018

Peer evaluation due November 1, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

1A. Let (X, d) and (Y, dY ) be metric spaces. Let M > 0, and let (fn : X → Y )n∈N be
a sequence of Lipschitz continuous functions satisfying: for all n ∈ N and for all x, y ∈ X,
dY
(
fn(x), fn(y)

)
≤ Md(x, y). Prove or disprove: if (fn)n∈N converges uniformly to f :

X → Y , then f is Lipschitz continuous with the same constant, that is, for all x, y ∈ X,
dY
(
f(x), f(y)

)
≤Md(x, y).

2A. Suppose (X, d) is a compact metric space. Prove that if F ⊆ C(X,R) is equicontinuous
and pointwise bounded (for all x ∈ X, the set {f(x) | f ∈ F} is a bounded subset of R), then
F is a bounded subset of C(X,R). (Hint: Begin by proving that the map x 7→ supf∈F |f(x)| is

a continuous function from X to R.)

3A. Let f : R → R be a continuous function satisfying: 0 ≤ f ≤ 1, for all r ∈ R,
f(r + 2) = f(r), f |[0,1/3] ≡ 0, and f |[2/3,1] ≡ 1. Define γ : [0, 1] → [0, 1]2 by γ(t) =(∑∞

n=1 2−nf(32n−1t),
∑∞

n=1 2−nf(32nt)
)
. Prove that γ is a continuous surjection of [0, 1] onto

[0, 1]2. (Hint: Prove that each component of γ is the limit of a uniformly convergent sequence of

functions. For further hints, see Rudin, p. 168.)

4A. Suppose that f ∈ C([0, 1],R) is such that for all integers n ≥ 0,
∫ 1

0
f(x)xn dx = 0. Prove

that f is the constant 0 function. You may use without proof the fact that if g ∈ C([0, 1],R)

is non-negative and non-constant, then
∫ 1

0
g(x) dx > 0. (Hint: Show that

∫ 1
0 f(x)p(x) dx = 0

for all polynomials p ∈ R[x]. Then, use Weierstrass approximation to prove that
∫ 1
0 f(x)2 dx = 0.)

5A. (Optional) Let BC(R,R) be the space of space of bounded, continuous, real-valued
functions on R endowed with the supremum metric: d(f, g) = supx∈R

∣∣f(x) − g(x)
∣∣. Let

f ∈ BC(R,R), and for r ∈ R, define fr ∈ BC(R,R) by fr(x) = f(x + r). Definition: the
function f is Bohr almost-periodic if for all ε > 0, the set Rε := {r ∈ R | d(f, fr) < ε} is
syndetic (there exists c > 0 such that for all x ∈ R, Rε∩ [x, x+ c] 6= ∅). Prove that f is Bohr
almost-periodic if and only if the subspace {fr | r ∈ R} of BC(R,R) is compact. You may
fill in the details on the following outline if you wish.

i. The subspace {fr | r ∈ R} is complete since it is a closed subset of BC(R,R). Thus,
it suffices to show that f is Bohr a.-p. if and only if {fr | r ∈ R} is totally bounded.

ii. Prove that for all r, s ∈ R, d(fr, fs) = d(fr−s, f), and use this to prove that if {fr | r ∈
R} is totally bounded, then f is Bohr a.-p.

iii. Prove that if f is Bohr a.-p., then f is uniformly continuous. Then, use this in con-
junction with the first fact from part ii. to prove that {fr | r ∈ R} is totally bounded.



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #3B
Due October 23, 2018

Peer evaluation due November 1, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

1B. Use the Arzelà-Ascoli theorem to prove that the subspace

K =
{
f ∈ C([0, 1],R)

∣∣∣ f(0) = 0 and
∣∣f(x)− f(y)

∣∣ ≤√|x− y|}
of C([0, 1],R) is compact. Are x 7→

√
x or x 7→ x2 in K?

2B. Let (X, d) and (Y, dY ) be metric spaces, and suppose X is compact. Prove that if
F ⊆ C(X, Y ) is equicontinuous, then it is uniformly equicontinuous : for all ε > 0, there
exists δ > 0, such that for all x, y ∈ X and all f ∈ F , if d(x, y) < δ, then dY

(
f(x), f(y)

)
< ε.

(Hint: Follow the proof of the fact that continuous functions on compact spaces are uniformly

continuous.)

3B. Let (X, d) and (Y, dY ) be metric spaces. Let (fn : X → Y )n∈N be a sequence of contin-
uous functions that converges uniformly to f : X → Y , and let (xn)n∈N ⊆ X be a sequence
of points that converges to x ∈ X. Prove that limn→∞ fn(xn) = f(x). Show that uniform
convergence is a necessary assumption by giving an example of a pointwise-convergent se-
quence of continuous functions (fn)n∈N on a compact space X and a sequence (xn)n∈N ⊆ X
that converges to x ∈ X for which limn→∞ fn(xn) 6= f(x).

4B. A sequence (xn)n∈N ⊆ [0, 1] is uniformly distributed if for all f ∈ C([0, 1],R),

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x) dx. (1)

Prove Weyl’s criterion: a sequence (xn)n∈N ⊆ [0, 1] is uniformly distributed if and only if for
all polynomials f ∈ R[x], the equality in (1) holds. (Hint: Use Weierstrass approximation and

the triangle inequality to bound
∣∣N−1∑N

n=1 f(xn)−
∫ 1
0 f(x) dx

∣∣ from above.)

5B. (Optional) Suppose (X, d) is a non-empty, compact metric space. Endow Y := X ×R
with the metric dY

(
(x1, r1), (x2, r2)

)
= d(x1, x2)+|r1−r2|. Let F(Y ) be the set of non-empty,

compact subsets of Y endowed with the Hausdorff metric dH , defined for F,H ∈ F(Y ) by

dH
(
F,H

)
= inf{δ ≥ 0 | F ⊆ [H]δ and H ⊆ [F ]δ},

where [F ]δ = {y ∈ Y | ∃f ∈ F, dY (y, f) ≤ δ} is the closed δ-neighborhood of F . We showed
in Homework #2, problem 4B that f : X → R is continuous if and only if its graph, Γ(f) ⊆
Y , is compact, that is, Γ(f) ∈ F(Y ). Let (fn)n∈N ⊆ C(X,R) and f ∈ C(X,R). Prove that
(fn)n∈N converges uniformly to f if and only if

(
Γ(fn)

)
n∈N ⊆ F(Y ) converges to Γ(f) ∈ F(Y )

with respect to the Hausdorff metric. (Hint: the “only if” direction is straightforward from the

definitions. For the “if” direction, make use of the fact that f is uniformly continuous.)



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #4A
Due November 6, 2018

Peer evaluation due November 15, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

Unless otherwise specified, all function spaces, such as C1(R), consist of real-valued functions.

1A. Let a, c ∈ R, c > 0. Prove that x 7→ |x|a is continuously differentiable on R if and only

if a > 1. Then, define f : [−1, 1]→ R by f(x) =

{
|x|a sin

(
|x|−c

)
if x 6= 0

0 if x = 0
, and prove that:

i. f is continuous if and only if a > 0;

ii. f is continuously differentiable if and only if a > 1 + c; and

iii. f is twice continuously differentiable if and only if a > 2 + 2c.

2A. Let f : R→ R and x ∈ R.

i. Suppose f is differentiable at x. Prove that

f ′(x) = lim
h→0

f(x+ h)− f(x− h)

2h
.

ii. Suppose f is twice differentiable at x. Prove that

f ′′(x) = lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
.

(Hint: On part ii., consider appealing to L’Hospital’s theorem.)

3A. Define

BC1(R) =
{
f : R→ R

∣∣ f ∈ BC(R) ∩ C1(R) and f ′ ∈ BC(R)
}
,

and for f, g ∈ BC1(R), define d(f, g) = supx∈R |f(x)− g(x)| + supx∈R |f ′(x)− g′(x)|. Prove
that (BC1(R), d) is a metric space. Prove that the derivative operator ·′ : BC1(R)→ BC(R),
where BC(R) is endowed with the uniform metric, is continuous.

4A. Let f : R → R be twice differentiable on R, and suppose that there exist A,C > 0
such that |f | ≤ A and |f ′′| ≤ C. Prove that |f ′| ≤ A + C. (Hint: Fix x ∈ R and h > 0, and

use Taylor’s theorem to write f ′(x) in terms of, among other things, f(x+ 2h).)

5A. Let f ∈ C1(R), and suppose limx→∞ f
′(x) exists and is equal to L ∈ R (in the ex-

tended real numbers). Show that limx→∞ f(x)/x = L. (This is a special case of L’Hospital’s
theorem, so do not appeal to that theorem without re-proving it first.) (Hint: Use the mean

value theorem.)



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #4B
Due November 6, 2018

Peer evaluation due November 15, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

Unless otherwise specified, all function spaces, such as C1(R), consist of real-valued functions.

1B. Let f : R→ R, and suppose that for all x, y ∈ R,
∣∣f(x)− f(y)

∣∣ ≤ (x− y)2. Prove that
f is constant.

2B. For n ∈ N, define fn : R→ R by

fn(x) =
x

1 + nx2
.

Prove that (fn)n∈N is a sequence of continuously differentiable functions that converges uni-
formly to a continuously differentiable function f : R → R but that the sequence (f ′n)n∈N
does not even converge pointwise to f ′.

3B. Let f : [0, 1]→ R be continuously differentiable. Prove that f is uniformly differentiable
on [0, 1]: for all ε > 0, there exists δ > 0 such that for all 0 ≤ x ≤ y ≤ z ≤ 1 with
0 < |x− z| < δ, ∣∣∣∣f(x)− f(z)

x− z
− f ′(y)

∣∣∣∣ < ε.

4B. Let f ∈ C2(R), and suppose that f ≥ 0 and f ′′ ≤ 1. Prove that (f ′)2 ≤ 2f . (Hint:

Fix x, y ∈ R, and use Taylor’s theorem to approximate f(x+ y). Use the given bounds along with

what you know about the discriminant of a quadratic polynomial.)

5B. Let f : (1,∞) → R be differentiable, and define g : (1,∞) → R by g(x) = f(x)/x.
Prove that if there exist A > 0 such that for all x > 1, |f ′(x)| ≤ Ax, then g is uniformly
continuous. You may use the outline below if you wish.

i. Show that it suffices to prove that g is differentiable and that g′ is bounded.

ii. Show that f is bounded on (1, 2] using the mean value theorem, and conclude that g′

is bounded on (1, 2].

iii. Show that g′ is bounded on [2,∞) using the mean value theorem.



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #5A
Due November 20, 2018

Peer evaluation due December 4, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

Unless otherwise specified, all function spaces, such as C1(R), consist of real-valued functions.

1A. Define f : R → R by f(x) = 0 if x is irrational and f(x) = 1/m if x = n/m, where
n,m ∈ Z, m ≥ 1, are relatively prime. Prove from the definition of the Riemann integral
that f is Riemann integrable on the interval [0, 1]. Prove that the related function 1Q is not
Riemann integrable on the interval [0, 1].

2A. Prove that if g ∈ C([0, 1]) is non-negative and non-constant, then

∫ 1

0

g(x) dx > 0.

Combine this with the Bunyakovsky-Cauchy-Schwarz inequality to show that

d(f, g) =

(∫ 1

0

(
f(x)− g(x)

)2
dx

)1/2

is a metric on C([0, 1]). Show that the metric space
(
C([0, 1]), d

)
is not complete.

3A. Let f ∈ C1([0, 1]). Prove that

lim
N→∞

(
N∑

n=1

f
( n

N

)
−N

∫ 1

0

f(x) dx

)
=

f(1)− f(0)

2
.

(Hint: Denote by SN the expression inside the parenthesis on the left hand side. Write SN =

N
∑

n

∫ (
f(n/N) − f(x)

)
dx with the correct limits of summation and integration. Compare SN

to
∑

n f
′(n/N)/2N using the uniform continuity of f ′, and recognize a Riemann sum.)

4A. Definition: the support of f ∈ C(R) is the set supp(f) = {x ∈ R | f(x) 6= 0}. Defini-
tion: the sumset of A,B ⊆ R is A + B = {a + b | a ∈ A, b ∈ B}. Let f, g ∈ C(R), and
suppose f has compact support. Prove that supp(f ∗ g) ⊆ supp(f) + supp(g), and give an
example showing that the inclusion need not be an equality. Conclude that if both f and g
have compact support, then f ∗ g has compact support.

5A. Suppose K ∈ C(R2) is such that for all x, y, z ∈ R, K(x, y + z) = K(x, y)K(x, z). For
f ∈ C(R) with compact support, define the function TKf : R→ R by(

TKf
)
(x) =

∫ ∞
−∞

K(x, y)f(y) dy.

Prove that if f, g ∈ C(R) have compact support, then TK(f ∗ g) = (TKf)(TKg).



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #5B
Due November 20, 2018

Peer evaluation due December 4, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

Unless otherwise specified, all function spaces, such as C1(R), consist of real-valued functions.

1B. Prove from the definition of the Riemann integral that if f : [0, 1] → R is Riemann
integrable, then |f | : [0, 1]→ R is Riemann integrable.

2B. Let f, g ∈ C([a, b]) with g ≥ 0. Prove that there exists c ∈ [a, b] such that∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.

(Hint: You might find it helpful to use the fact that f([a, b]) is an interval in R.)

3B. Let f ∈ C([0, 1]) and g ∈ C(R). Prove that if g is periodic with period 1 (for all x ∈ R,
g(x + 1) = g(x)), then

lim
N→∞

∫ 1

0

f(x)g(Nx) dx =

∫ 1

0

f(x) dx

∫ 1

0

g(x) dx.

(This is a special case of the Riemann-Lebesgue lemma.) (Hint: Show that we can assume

without loss of generality that g ≥ 0. Using the periodicity of g, write
∫ 1
0 f(x)g(Nx) dx =

N−1
∑

n

∫
f
(
(n+ y)/N

)
g(y) dy with the correct limits of summation and integration. Then, apply

the result of Problem 2B to each integral in the sum and recognize a Riemann sum.)

4B. Prove that if f ∈ C(R) has compact support and g ∈ B(R) is Riemann integrable
on every compact interval, then f ∗ g ∈ C(R). (Be careful: we do not assume that∫∞
−∞ |g(x)| dx < ∞.) Give an example of f, g ∈ C(R) with f uniformly continuous such

that f ∗ g is not uniformly continuous on R.

5B. Set X = [0, 1], and let K ∈ C(X2). For f ∈ C(X), define the function TKf : X → R
by (

TKf
)
(x) =

∫ 1

0

K(x, y)f(y) dy.

Prove that if f ∈ C(X), then TKf ∈ C(X). Prove that the map TK : C(X) → C(X) is
continuous.



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #6A
Due December 11, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

1A. Consider the following two norms on Rn×n: the Euclidean norm ‖A‖E = (
∑n

i,j=1A
2
i,j)

1/2

induced from Rn2
and the operator norm ‖A‖op = sup|x|≤1 |Ax|, where | · | denotes the

Euclidean norm on Rn. Prove that for all A ∈ Rn×n,

‖A‖op ≤ ‖A‖E ≤
√
n‖A‖op.

(This shows that the Euclidean and operator norms on Rn×n are equivalent. In fact, all
norms on a finite dimensional vector space are equivalent.)

2A. Prove that if f : Rn → R is differentiable at x0 ∈ Rn and f attains a local maximum
at x0, then f ′(x0) = 0. (Hint: Reduce this to the analogous statement in one dimension by

considering directional derivatives.)

3A. Definition: a matrix B ∈ Rn×n is a square root of the matrix A ∈ Rn×n if B2 = A. Give
an example of a matrix with no square root. Equip Rn×n with the Euclidean metric induced
from Rn2

. Prove that there exists δ > 0 such that all matrices in Bδ(I) have a square root.
(Hint: Prove that f : A 7→ A2 is continuously differentiable on Rn×n. Compute f ′(I), and appeal

to the inverse function theorem.)

4A. Consider the system of equations{
sin(x+ y) + z2 = 1

y2 + xz2 = π2
.

Show that y and z can be solved as functions of x in a neighborhood of the point x = 0:
there exists an open interval I ⊆ R containing 0 and functions g, h ∈ C1(I,R) so that for all
x ∈ I, (x, y, z) = (x, g(x), h(x)) is a solution to the system.

5A. Definition: a curve γ : [a, b] → Rn is a streamline for the vector field F : Rn → Rn

if for all t ∈ [a, b], γ′(t) = F (γ(t)). Let F (x, y) = (x2 − y, y2). Prove that there exists a
closed interval I ⊆ R containing 0 and a streamline γ : I → R for F with γ(0) = (−1,−1).
Sketch the vector field F in the window [−2, 2]2, and sketch (part of) the streamline passing
through (−1,−1).



Math 5101, NEU, Fall 2018
Instructor: Daniel Glasscock Name:

Homework #6B
Due December 11, 2018

Instructions: If you choose to submit the problems on this side, staple this sheet to your work so

that this is the first page. Your original work will be given to one of your peers for evaluation, so

you are strongly encouraged to make a copy of it before submission.

1B. Equip Rn×n with the operator norm ‖ · ‖ induced from the Euclidean norm on Rn. Let
A,B ∈ Rn×n. In this problem, you may use without proof the fact that ‖AB‖ ≤ ‖A‖‖B‖
and that matrix multiplication (A,B) 7→ AB is continuous on Rn×n × Rn×n.

i. Prove that if ‖A‖ < 1, then
∑∞

n=0A
n = (I −A)−1. Conclude that if ‖A+ I‖ < 1, then

A is invertible.

ii. Prove that if B is invertible and ‖B−1A‖ < 1, then A + B is invertible. (Hint: Factor

out B from A+B and apply part i.)

iii. Prove that the subset of Rn×n consisting of invertible matrices is open.

2B. Let E ⊆ Rn be open and connected, and let f : E → Rm be differentiable. Show that
if for all x ∈ E, f ′(x) = 0, then f is constant. (Hint: Show using Theorem 9.19 from Rudin

that f is locally constant : for all x ∈ E, there exists δ > 0 such that for all y ∈ Bδ(x), f(y) = f(x).

Fix c ∈ f(E), and show that the set {x ∈ E | f(x) = c} is non-empty, open, and closed. Finally,

invoke the connectedness of E.)

3B. Define f : R → R by f(x) = x + 2x2 sin(x−1) when x 6= 0 and f(x) = 0 when x = 0.
Prove that f ′(0) = 1, that f ′ is bounded on [−1, 1], and that f is not injective on any open
neighborhood of the origin. Conclude that the assumption on the continuity of the derivative
in the statement of the inverse function theorem is necessary.

4B. Consider the equation x2y + ex + z = 0 where x, y, z ∈ R. Show that x can be solved
as a function of y and z in a neighborhood of the point (y, z) = (1,−1): there exists an
open set E ⊆ R2 containing (1,−1) and a function g ∈ C1(E,R) so that for all (y, z) ∈ E,
(x, y, z) = (g(y, z), y, z) is a solution to the equation. Find g′(1,−1).

5B. Prove that there exists a unique f ∈ C2([−1, 1],R) that solves the initial value problem
f ′′(x) = x2f ′(x) + f(x) sin(x), f(0) = 1, f ′(0) = 2.
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