
Topology and Convergence
by: Daniel Glasscock, May 2012

These notes grew out of a talk I gave at The Ohio State University. The primary reference is [1]. A
possible error in the proof of Theorem 1 in [1] is corrected here. (Updated: May 15, 2012.)

Warning: It was brought to my attention that some set-theoretic care is required when making state-
ments about all subnets of a net. Because of the definition of a subnet, the collection of all subnets of a
net may too large to be a set. One runs the risk of a “set of all sets.” No care is taken in these notes to
remedy this.

1. Introduction

We are frequently in the following situation:

Let A,B be topological spaces and X be a subset of functions from A to B. Endow X with
the topology of pointwise convergence; i.e. the topology in which fn −→ f if and only if for
all a ∈ A, fn(a) −→ f(a).

The ubiquitous phrase “topology of pointwise convergence” seems to suggest two things: there is a
topology determined by the notion of pointwise convergence, and this topology is the unique topology
which yields this convergence on X. (There is at least one familiar topology which has this property: X
as a subset of BA inherits a topology from the product topology.)

Given a topology τ on a set X, let Cτ be the collection of all pairs (N, x) where N is a net in X converging
to the point x ∈ X with respect to τ . (See section 3 for definitions and notation regarding nets.) We
are led naturally to ask:

• To what extent does Cτ determine the topology τ?

• Is there another topology δ on X such that Cδ = Cτ?

• If C is a collection of pairs of nets and points in X, is there a topology δ on X such that Cδ = C?

Given a collection C of pairs of nets and points in X, there are some immediate necessary conditions on
C if we hope to find a topology δ on X such that Cδ = C. For example, constant nets converge in any
topology, so pairs of constant nets with their limit points must exist in C.

Definition A convergence class C on a set X is a collection of pairs C = {(N, x) | N net in X,x ∈ X}
with the following properties:

i) If N is a constant net at x, then (N, x) ∈ C.

ii) If (N, x) ∈ C, then for all subnets N ′ of N , (N ′, x) ∈ C.

iii) If N is a net and x is a point such that for all subnets N ′ of N , there is a subnet N ′′ of N ′ such
that (N ′′, x) ∈ C, then (N, x) ∈ C.

iv) If ((N,D), x) ∈ C and for each d ∈ D, (Md, N(d)) ∈ C, then (L, x) ∈ C where L is the diagonal net
of N and the Md’s.

Given a net N in X, we say N converges (C) to x when (N, x) ∈ C.

That conditions i) – iv) on C are necessary – that Cτ is a convergence class – is the content of Lemmas 2
– 5. The striking fact is that they are sufficient to generate a topology δ on X with exactly the specified
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convergence class C. The goal of the remainder of these notes is the proof of the following theorem.

Theorem 1 Let X be a set and C be a convergence class on X. For each subset A of X, let c(A) =
{x ∈ X |(N, x) ∈ C, N in A}. Then c is a closure operator on X. If τ is the topology on X generated
by c, then a net N in X converges (C) to x if and only if N converges to x with respect to τ .

Corollary 1 Topologies on X and convergence classes on X are in 1–1 correspondence.

2. Closure operators

One of the primary tools in the proof of Theorem 1 is closure operators. Given a topological space
(X, τ), to each subset A ⊆ X we may associate its closure A, the smallest closed set containing A. Two
questions naturally arise: to what extent does A 7−→ A determine the topology τ , and when is a function
c : P(X) −→ P(X) the closure function with respect to some topology on X? (Here P(X) denotes the
set of subsets of X, the power set of X.)

Definition A closure operator c on a set X is a function c : P(X) −→ P(X) with the following
properties: for all A,B ⊆ X,

a) c(∅) = ∅,

b) A ⊆ c(A),

c) c(A) = c(c(A)),

d) c(A ∪B) = c(A) ∪ c(B).

These conditions (Kuratowski’s closure axioms) are clearly necessary for c to look like the closure func-
tion with respect to some topology. They are, in fact, sufficient.

Theorem 2 Let X be a set and c be a closure operator on X. Let σ be the collection of those A ⊆ X
for which A = c(A), and let τ be the collection of complements of elements of σ. Then τ is a topology
on X in which c(A) = A for all A ⊆ X.

Proof Property a) gives ∅ ∈ σ. Property b) gives X ∈ σ. Thus ∅, X ∈ τ . Property d) shows that the
union of a finite collection of sets from σ remains in σ. This means that the intersection of a finite
collection of sets from τ remains in τ .

Note that if B ⊆ A, then c(B) ⊆ c(A). This follows from property d) and the fact that A = (A\B)∪B.
Suppose {Ai}i∈I is a family of sets from σ and B =

⋂
i∈I Ai. For all i ∈ I, B ⊆ Ai, hence c(B) ⊆⋂

i∈I c(Ai) =
⋂
i∈I Ai = B. Property b) gives B ⊆ c(B), and so B = c(B). This shows that the union

of a family of sets from τ remains in τ . This concludes the proof that τ is a topology on X.

For A ⊆ X, let A denote the closure of A with repsect to τ . It remains to show that for all A ⊆ X,
c(A) = A. Let A ⊆ X. By property c), c(A) ∈ σ, whereby A ⊆ c(A). Since A ∈ σ, c(A) = A. Since
A ⊆ A, c(A) ⊆ c(A) = A. Therefore, c(A) = A. �

Corollary 2 Topologies on X and closure operators on X are in 1–1 correspondence.

3. Nets and convergence

The following definitions are meant to be a quick review of directed sets and nets. Please consult [1] for
a more comprehensive treatment.
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Definition A directed set is a non-empty set D with a binary relation ≥ which is reflexive, transitive,
and which satisfies the following property: for all d1, d2 ∈ D, there exists a d ∈ D such that d ≥ d1, d2.

Definition A net in a set X is a pair (N,D) where D is a directed set and N : D −→ X. When the
underlying directed set is unimportant, we abbreviate (N,D) by N . In particular, N can stand for both
the net and the function on the underlying directed set.

Definition A net (M,E) is a subnet of a net (N,D) if there is an I : E −→ D such that N ◦ I = M
(the corresponding diagram commutes) and for all d0 ∈ D, there is an e0 ∈ E such that for all e ≥ e0,
I(e) ≥ d0. (The second condition is crafted exactly to make subnets of convergent nets converge.)

Be careful with subnets; they sometimes defy the general intuition and convention of being a sub-object.
Still, check that a subnet of a subnet is a subnet. The following is a very natural way to get subnets.

Definition A subset E of a directed set D is cofinal if for all d ∈ D, there exists an e ∈ E such that
e ≥ d. The reader should pause to verify the following facts which we will use later:

• E is a directed set (with the binary relation from D).

• If (N,D) is a net, (N |E , E) is a subnet of N .

• For all d0 ∈ D, {d ∈ D | d ≥ d0} is cofinal.

• If D = A ∪B, then either A or B is cofinal.

For the rest of this section, let X be a topological space and x ∈ X. All nets are in X unless otherwise
specified.

Definition A net (N,D) is eventually in A ⊆ X if there is a d0 ∈ D such that for all d ≥ d0, N(d) ∈ A.

Definition A net N converges to x if for all neighborhoods U of x, N is eventually in U .

Lemma 1 Let A ⊆ X. Then x ∈ A if and only if there is a net in A converging to x.

The following four lemmas show that conditions i) – iv) for a good notion of convergence C are necessary
if C is to come from a topology. The proofs of the first three are left as exercises to the reader.

Lemma 2 Let N be a constant net with value x. Then N converges to x.

Lemma 3 Let N be a net and N ′ be a subnet of N . If N converges to x, then N ′ converges to x.

Lemma 4 Let N be a net and x be a point with the following property: for all subnets N ′ of N , there
exists a subnet N ′′ of N ′ such that N ′′ converges to x. Then N converges to x.

The next lemma is intimately related to the closure axiom A = A, as will be elucidated in the proof of
Theorem 1. We require a few more definitions.

Definition The product directed set of a family of directed sets {(Dλ,≥λ)}λ∈Λ is the set
∏
λ∈ΛDλ

directed by the relation ≥ defined by: p ≥ q if for all λ ∈ Λ, pλ ≥λ qλ. (The reader must check that the
product directed set is actually a directed set with the given relation.)

We will encounter the following product directed set several times. Let D be a directed set, and for each
d ∈ D, let Ed be a directed set. Consider the product directed set D ×

∏
d∈D Ed. We think of elements
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of this product set as pairs (d′, f) where d′ ∈ D and f is a function on D such that for all d ∈ D, fd is
an element of Ed.

Definition Let (N,D) be a net, and for each d ∈ D, let (Md, Ed) be a net. The diagonal net of N
and the Md’s is the directed product set D ×

∏
d∈D Ed paired with the map L : D ×

∏
d∈D Ed −→ X

given by L(d, f) = Md(fd). Check that if A ⊆ X is such that for all d ∈ D, (Md, Ed) is in A, then the
diagonal net is in A.

Lemma 5 Let (N,D) be a net converging to x, and for each d ∈ D, let (Md, Ed) be a net converging to
N(d). Let L be the diagonal net of N and the Md’s. Then L converges to x.

Proof Let U be an open neighborhood of x. Since N converges to x, there exists a d0 ∈ D such that for
all d ≥ d0, N(d) ∈ U .

For d ≥ d0, define fd ∈ Ed to be such that for all e ≥ fd in Ed, Md(e) ∈ U (this is possible since U is
an open neighborhood of N(d) and Md converges to N(d)). For d 6≥ d0, define fd to be some element of
Ed. Now that fd ∈ Ed is defined for all d ∈ D, we consider it as an element of

∏
d∈D Ed.

To prove that L converges to x, we show that for all (d′, f ′) ≥ (d0, f) in D ×
∏
d∈D Ed, L(d′, f ′) ∈ U .

That (d′, f ′) ≥ (d0, f) is that d′ ≥ d0 and for all d ∈ D, f ′d ≥ fd. By definition, L(d′, f ′) = Md′(f ′d′),
which is in U precisely because d′ ≥ d0 and f ′d′ ≥ fd′ . �

4. Proof of Theorem 1

First we need a technical lemma.

Lemma 6 Let X be a set and N,K be two nets in X on the same directed set D. For each d ∈ D, let
Dd = {d′ ∈ D | d′ ≥ d}, Xd be the image of N |Dd

, and (Md, Ed) be a net in Xd. Let L be the diagonal
net of K and the Md’s. Then L is a subnet of N .

Proof We must produce a map I : D ×
∏
d∈D Ed −→ D such that L ◦ I = N and for all d0 ∈ D, there

is a (d1, f1) ∈ D ×
∏
d∈D Ed such that for all (d, f) ≥ (d1, f1), I(d, f) ≥ d0.

Let (d, f) ∈ D ×
∏
d∈D Ed. Since L maps into the image of N , the set N−1[L(d, f)] in D is non-empty.

Define I(d, f) to be any element of the set N−1[L(d, f)]. It follows immediately that L ◦ I = N .

Let d0 ∈ D. Fix f1 ∈
∏
d∈D Ed and consider (d0, f1) ∈ D×

∏
d∈D Ed. Recall that L(d, f) = Md(fd) ∈ Xd.

If d ≥ d0, then Xd ⊆ Xd0 , and so if (d, f) ≥ (d0, f1), then L(d, f) ∈ Xd0 . By the definitions of Xd0 and
I, I(d, f) ≥ d0. �

Theorem 1 Let X be a set and C be a convergence class on X. For each subset A of X, let c(A) =
{x ∈ X |(N, x) ∈ C, N in A}. Then c is a closure operator on X. If τ is the topology on X generated
by c, then a net N in X converges (C) to x if and only if N converges to x with respect to τ .

Proof We show first that c is a closure operator on X by checking properties a) – d) from section 2.

a) Since directed sets are non-empty, there can be no net in ∅, and so c(∅) = ∅. b) Let A ⊆ X. A
constant net at x ∈ A is in {x} ⊆ A and, by property i), converges (C) to x. Thus x ∈ c(A), whereby
A ⊆ c(A).

c) Let A ⊆ X and x ∈ c(c(A)). Let (N,D) be a net in c(A) which converges (C) to x. For each d ∈ D,
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N(d) ∈ c(A), hence there exists a net (Md, Ed) in A which converges (C) to N(d). Let L be the diagonal
net of N and the Md’s. Then L is in A, and by property iv), L converges (C) to x. This shows x ∈ c(A),
whereby c(A) = c(c(A)).

d) Let A,B ⊆ X. If x ∈ c(A), then x ∈ c(A∪B) by the definition of c. This shows c(A)∪c(B) ⊆ c(A∪B).
To see the reverse inclusion, suppose x ∈ c(A ∪ B), and let (N,D) be a net in A ∪ B which converges
(C) to x. Write D = DA ∪ DB so that N(d) ∈ A when d ∈ DA and similarly for B. Then either DA

or DB is cofinal in D, and consequently either (N |DA
, DA) or (N |DB

, DB) is a subnet of N which, by
property ii), converges (C) to x. Hence either x ∈ c(A) or x ∈ c(B), whereby x ∈ c(A) ∪ c(B).

Let τ be the topology on X generated by the closure operator c. We show next that a net N converges
(C) to x if and only if N converges to x with respect to the topology τ .

Suppose first that (N,D) converges (C) to x but does not converge to x with respect to τ . Then there
is an open neighborhood U of x which N is not eventually in. Hence there is a cofinal subset E of D
such that (N |E , E) is in X \ U . Since (N |E , E) is a subnet of N , by property ii), it converges (C) to x.
We have exhibited a net in X \ U which converges (C) to x /∈ X \ U , hence X \ U 6= c(X \ U) = X \ U .
It follows that X \ U is not closed in τ , and hence that U is not open in τ , a contradiction.

Suppose now that a net P converges to x with respect to τ . To show that P converges (C) to x, it
suffices by property iii) to show that each subnet of P has a subnet which converges (C) to x.

Let (N,D) be a subnet of P , and let d ∈ D. Let Dd = {d′ ∈ D | d′ ≥ d} and Xd be the image of N |Dd
.

Since (N |Dd
, Dd) is a subnet of N which is a subnet of P , N |Dd

converges to x with respect to τ . Since
(N |Dd

, Dd) is in Xd, x ∈ Xd = c(Xd). By the definition of c, there exists a net (Md, Ed) in Xd which
converges (C) to x.

We have for each d ∈ D a net Md in Xd which converges (C) to x. Let (K,D) be the constant net at x.
By property i), K converges (C) to x. Let L be the diagonal net of K and the Md’s. By Lemma 6 and
property iv), L is a subnet of N converging (C) to x. �

Corollary 1 Topologies on X and convergence classes on X are in 1–1 correspondence.

5. Discussion, examples, and further questions

Theorem 1 tells us that a topology is entirely determined by its collection of convergent nets and their
limit points. This justifies the phrase “topology of pointwise convergence” as there is a unique topology
in which a net of functions converges if and only if it converges pointwise at each point.

What more, Theorem 1 gives us an inclusion-reversion correspondence between convergence classes and
topologies on a set X. Let C1, C2 be convergence classes on X with corresponding topologies τ1, τ2. The
reader will quickly verify the following facts:

• If C1 ⊆ C2, then τ1 ⊇ τ2.

• The smallest topology containing τ1 ∪ τ2 corresponds to the convergence class C1 ∩ C2.

• The smallest convergence class containing C1 ∪ C2 corresponds to the topology τ1 ∩ τ2.

Given a collection C of nets and points in a set, it may in general be very difficult to decide whether
or not C is a convergence class. In what follows, we provide two important examples of when one can
actually verify the conditions. Recall that C is a convergence class on X if it satisfies the following:

i) If N is a constant net at x, then (N, x) ∈ C.
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ii) If (N, x) ∈ C, then for all subnets N ′ of N , (N ′, x) ∈ C.

iii) If N is a net and x is a point such that for all subnets N ′ of N , there is a subnet N ′′ of N ′ such
that (N ′′, x) ∈ C, then (N, x) ∈ C.

iv) If ((N,D), x) ∈ C and for each d ∈ D, (Md, N(d)) ∈ C, then (L, x) ∈ C where L is the diagonal net
of N and the Md’s.

Example 1 (One convergence in terms of another) First, let us check that pointwise convergence
generates a topology. Let A be a set, B be a topological space, and X be a subset of the set of functions
from A to B. For a ∈ A, let Va : X −→ B be evaluation at a. Let C be the collection of pairs (N, f)
where N is a net in X, f ∈ X, and for all a ∈ A, Va ◦N converges (as a net in B) to f(a). The more
familiar condition is the special case of sequences: fn converges (C) to f if and only if fn converges
pointwise to f at each point. Now we check that C is indeed a convergence class by verifying conditions
i) – iv) above.

i) Let be N be a constant net at f , and let a ∈ A. Then Va ◦N is the constant net at f(a) and hence
converges to f(a). Therefore (N, f) ∈ C.

ii) Let (N, f) ∈ C, N ′ be a subnet of N , and a ∈ A. Then it is easily checked that Va ◦N ′ is a subnet of
Va ◦N , and since Va ◦N converges to f(a), so does Va ◦N ′. Therefore (N ′, f) ∈ C.

iii) Let (N,D) be a net and x be a point such that for all subnets N ′ of N , there is a subnet N ′′ of N ′

such that (N ′′, x) ∈ C. To show that (N, x) ∈ C, let a ∈ A and consider the net S = Va ◦N . It suffices
by Lemma 4 to show that for every subnet S′ of S, there exists a subnet S′′ of S′ such that S′′ converges
to f(a). Let (S′, E) be a subnet of S and I : E −→ D be the map on the index sets. Let N ′ : E −→ X
be N ′ = N ◦ I. Then (N ′, E) is a subnet of N . Thus there exists a subnet (N ′′, F ) of N ′ (with index
set map J : F −→ E) such that (N ′′, f) ∈ C. The net S′′ = Va ◦N ′′ is a subnet of S′ and (N ′′, f) ∈ C
means that S′′ converges to f(a).

N 

N

N 
I

E

F

X
S

S

S

Va
BD

J

iv) Let ((N,D), f) ∈ C and for each d ∈ D, let (Md, N(d)) ∈ C. Let L be the diagonal net of N
and the Md’s. Let a ∈ A. Since Va ◦ N converges to f(a) and for all d ∈ D, Va ◦ Md converges
to N(d)(a) = (Va ◦ N)(d), it suffices by Lemma 5 to show that Va ◦ L is the diagonal net of Va ◦ N
and the Va ◦ Md’s. Let P be the diagonal net of Va ◦ N and the Va ◦ Md’s. Both L and P are
functions on the same directed set D ×

∏
d∈D Ed. Moreover, P : D ×

∏
d∈D Ed −→ B is defined by

P (d, g) = (Va ◦Md)(gd) = Va(Md(gd)) = Va(L(d, g)) = (Va ◦ L)(d, g). Hence P = (Va ◦ L).

Alternatively, to see that C is a convergence class, one could show that it consists of exactly the pairs
of convergent nets and their limits points in the topology which X inherits from the product topology
on BA. This is arguably an easier approach, but because the situation can be generalized considerably,
it is actually the mechanics of this exercise that are important and interesting. Let’s see another example.

Let K ⊆ Rn be compact, and consider C∞c (K), the space of all smooth functions with compact support
in K. There is a natural topology on this space generated by the family of semi-norms indexed by the
multi-index α: ||ϕ||α = ||∂αϕ||u. It is an exercise then to show that a net N in C∞c (K) converges to f
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in this topology if and only if ∂α ◦N converges to ∂αf uniformily for all multi-indices α.

Let D be the collection of pairs (N, f) where N is a net in C∞c (K), f ∈ C∞c (K), and for all multi-indices
α, ∂α ◦ N converges (as a net in C∞c (K)) to ∂αf in the uniform topology on C∞c (K). The proof that
D is a convergence class follows the exact line of reasoning above, and so we know immediately that D
generates a topology on C∞c (K).

More generally, let X be a set, B be a topological space, and {Mi : X −→ B}i∈I be a family of maps.
Let C be the collection of pairs (N, x) where N is a net in X, x ∈ X, and for all i ∈ I, Mi ◦N converges
(as a net in B) to Mi(x). Then by the same reasoning as above, C is a convergence class. Many examples
of convergence, especially from functional analysis, fit this form. These include: pointwise, semi-norm,
weak, weak-*, weak operator, and strong operator convergences. �

Example 2 (There is no topology of pointwise, almost everywhere convergence) Let X be
the space of measurable functions from [0, 1] to C. Let C be the collection of pairs (N, f) where N is a
net in X, f ∈ X, and there exists a subset H ⊆ [0, 1], depending on N , of measure 0 such that for all
a ∈ [0, 1] \H, Va ◦N converges (as a net in C) to f(a).

We want to show that C is not a convergence class by showing that C does not meet condition iv). Let
D = (0, 1)2 ordered lexicographically, and let (N,D) be the constant net at 0, the zero function. Clearly
N converges (C) to 0. For each d = (d1, d2) ∈ D, let Md : N −→ X be the constant net at δd2 , the point
mass at d2. Clearly Md converges (C) to 0. Let L be the diagonal net of N and the Md’s.

Suppose for a contradiction that L converges (C) to 0. There exists an H ⊆ [0, 1] of measure 0 such
that for all a ∈ [0, 1] \ A, Va ◦ L converges to 0. Fix a ∈ (0, 1) \ H, and let 0 < ε < 1. There exists a
(d′, g′) ∈ D ×

∏
d∈D N, such that for all (d, g) ≥ (d′, g′), |Va(L(d, g))| < ε. Let d ∈ D where d1 > d′1 and

d2 = a. Then d > d′, so (d, g) ≥ (d′, g). Therefore |Va(L(d, g))| < ε. But Va(L(d, g)) = δa(a) = 1, a
contradiction. �

We are left with some natural open ends:

• Let D be an arbitrary collection of nets and points. Call D consistent if there is a convergence
class C containing it. Are there conditions on a collection of nets and points to ensure that it is
consistent? Since the intersection of convergence classes is a convergence class, there is a smallest
convergence class containing D if it is consistent; call it the convergence class generated by D. Is
there anything useful in this direction?

• Are there natural further conditions that can be placed on a convergence class C which will guar-
antee that the generated topology will be first countable, metrizable, etc...?

• Is there a well-known topology describable only in terms of its notion of convergence? It would
make a great example to cite in these notes.
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