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The Toda and QR flows on the space of symmetric, tridiagonal matrices are described, as are the con-
nections to Cayley graphs and the symmetric eigenvalue problem. The primary reference is [1], from
which the figures appearing here were copied and modified, and to which the reader is referred for the
details omitted below.

The equations of motion of the 1-dimensional Toda lattice lead us to consider the system

dL

dt
= [A,L] = AL− LA, (1)

where L is an n × n, real, symmetric, tridiagonal matrix with diagonal (b1, · · · , bn) and off-diagonal
(a1, . . . , an−1), and A = (L)>0 − (L)<0, that is, the skew-symmetric matrix with zero diagonal and
upper off-diagonal (a1, . . . , an−1). Consider the following facts.

i. If M is a symmetric, tridiagonal matrix with positive entries on the off-diagonal, then M has
distinct eigenvalues and the first coordinate of each of its eigenvectors is non-zero.

ii. The positivity of the ai’s is preserved under the flow (1).

iii. The flow (1) is isospectral.

If we fix a spectrum Λ = {λ1 > · · · > λn} and let TΛ denote the space of n × n, real, symmetric,
tridiagonal matrices with each ai > 0 and spectrum Λ, then the facts above give us the following.

Proposition 1 The equation dL
dt = [A,L] yields a flow on TΛ.

The next step is to understand the space TΛ.

Proposition 2 The space TΛ is diffeomorphic to Sn−1
>0 = {x ∈ Rn |

∑
x2
i = 1, xi > 0}.

Proof (sketch). By the spectral theorem, write L ∈ TΛ as L = UΛUT where, by an abuse of nota-
tion, Λ is a diagonal matrix with diagonal Λ, U = (uij) is orthogonal, and for each i, (uij)j is the
eigenvector corresponding to the eigenvalue λi, normalized so that ui1 > 0. Define ϕ : TΛ −→ Sn−1

>0

by ϕ(L) = (u11, u21, . . . , un1), that is, ϕ sends matrices to the first coordinates of their appropriately
normalized eigenvectors.

Writing the eigenvalue equation LU = UΛ and using the orthogonality of U , we may conclude that the
first coordinates of the eigenvectors are enough (along with the eigenvalues) to recover L. Indeed, the
ai’s, bi’s, and uij ’s may be computed inductively from the ui1’s via

bi =

n∑
j=1

λju
2
ij , a2

i =

n∑
j=1

((λj − bi)uij − ai−1ui−1,j)
2
, ui+1,j = ((λj − bi)uij − ai−1ui−1,j) /ai, (2)

where a0 = an = u0j = 0.

To understand the Toda flow on Sn−1
>0 , let us analyze the form of the matrices corresponding to the

boundaries of the space. We take n = 3 as an example. Using (2) and the orthogonality of U , we
find that as (x1, x2, x3) limits to a point (u1, u2, 0), u1, u2 6= 0, in S2

>0, the corresponding matrices

ϕ−1(x1, x2, x3) limit to a matrix of the form

(
b1 a1 0
a1 b2 0
0 0 λ3

)
. The same holds for the matrices corresponding

to points in S2
>0 limiting to (u1, 0, u3), u1, u3 6= 0, and (0, u2, u3), u2, u3 6= 0, with λ3 replaced by λ2 and

λ1, respectively (see Figure 1 ).

As (x1, x2, x3) approaches one of (1, 0, 0), (0, 1, 0), or (0, 0, 1), the corresponding matrices ϕ−1(x1, x2, x3)
have a limit if and only if the ratio of the two terms tending to zero has a limit in [0,∞]. By blowing
up each of the three vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) by parameterizing lines of different slopes
through those points, we arrive topologically at a hexagon (see Figure 2 ).



.

The Toda flow, or at least a topologically equivalent one, may now be realized on the hexagon, where
the labels on the vertices and sides indicate the limiting form of the corresponding matrices. Note that
this hexagon corresponds to the Cayley graph of S3 with generators (12) and (23). In general, after
the appropriate topological modifications, the homeomorphism between Sn−1

>0 and the interior of the
Cayley graph of Sn generated by (12), (23), . . . , ((n− 1)n) with its usual embedding in Rn−1 reveals the
correspondence with TΛ.

Now that we have an understanding of the space Sn−1
>0 with respect to its association with TΛ, our goal

is to describe the Toda flow (1) on Sn−1
>0 .

Proposition 3 Let M be an n × n, real, symmetric matrix. Then dx
dt = Mx − 〈Mx, x〉x is a flow on

Sn−1
>0 . Given x(0) = x0, it has unique solution x(t) = eMtx(0)

||eMtx(0)|| . Moreover, the case M = Λ corresponds

to the Toda flow on TΛ under the aforementioned diffeomorphism.

It follows easily from Proposition 3 that regardless of the initial condition x0, x(t) → (1, 0, . . . , 0) as
t→∞. From the study of the matrices associated to the boundaries of Sn−1

>0 , this gives that L(t) −→ Λ
as t → ∞. We have seen this eigenvalue sorting property of the Toda flow before. With some effort,
Proposition 3 also yields that the rate of convergence is exponential. When n = 3, Proposition 3 allows
us to visualize the Toda flow on the hexagon (see Figure 3 ).

Next we present another flow on TΛ related to the symmetric eigenvalue problem and QR factoriza-
tion. The following is Francis’ algorithm to compute the eigenvalues of a matrix L ∈ TΛ by repeated
QR factorization. Suppose for convenience that each λi > 0. Factorize L = L0 = Q0R0 where Q0 is
orthogonal and R0 is upper triangular. Let L1 = R0Q0 = QT0 L0Q0, then factorize L1 = Q1R1. Let
L2 = R1Q1 = QT1 L1Q1, and factorize L2 = Q2R2. Continuing in this manner, we obtain inductively a
sequence of tridiagonal matrices (Lk)k ⊆ TΛ.

Theorem The sequence (Lk)k converges to Λ as k →∞. Moreover, the convergence is exponential.

Proof. We may prove the first statement of the theorem by realizing (Lk)k as the positive integer
times of a flow on Sn−1

>0 and utilizing Proposition 3. To accomplish this, by the spectral theorem, write
Lk = UkΛUTk and set uk = UTk e1, that is, the vector consisting of the first coordinates of each normalized
eigenvector of Lk. Since L1 = QT0 L0Q0 = QT0 UkΛUTk Q0, UT1 = UT0 Q0. Since Q0 is orthogonal and R0

is upper triangular, Q0e1 = L0e1
||L0e1|| . Finally,

u1 = UT1 e1 = UT0 Q0e1 = UT0

(
L0e1

||L0e1||

)
=

UT0 L0e1

||UT0 L0e1||
=

ΛUT0 e1

||ΛUT0 e1||
=

Λu0

||Λu0||
.

It follows by an easy induction that uk = Λku0

||Λku0|| for k = 0, 1, 2, . . .. This corresponds exactly to the

positive integer times of the flow in Proposition 3 with M = log Λ, and so Lk → Λ as k →∞.
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