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Theorem (Poincaré) Let (X,M, µ, T ) be a finite measure preserving system, and let A ∈ M with
µ(A) > 0. There exists an n ∈ N such that

µ(A ∩ T−nA) > 0.

Proof The sets A, T−1A, T−2A, . . . all have measure µ(A) > 0 in a space X of finite measure. Therefore,
there exists i < j ∈ N such that µ

(
T−iA ∩ T−jA

)
> 0. Now

µ
(
T−iA ∩ T−jA

)
= µ

(
T−i(A ∩ T−(j−i)A)

)
= µ

(
A ∩ T−(j−i)A

)
> 0.

Definition A set R ⊂ N is a set of recurrence if for all finite measure preserving systems (X,M, µ, T )
and for all A ∈M with µ(A) > 0, there exists an r ∈ R such that µ(A ∩ T−rA) > 0.

So, Poincaré’s theorem is exactly that N is a set of recurrence. An examination of the proof leads one
to see that if E ⊆ N is infinite, then the set of positive differences {e2 − e1 | e1 < e2 ∈ E} is a set
of recurrence. In fact, R is a set of recurrence if it contains difference sets of arbitrarily large sets of
positive integers. It is also readily seen that for all a ∈ N, aN is a set of recurrence. What more, any set
of recurrence intersects all aN non-trivially (consider permutations of a finite set).

The three theorems that follow give non-trivial examples of sets of recurrence.

Theorem (Furstenberg) If p(x) ∈ N[x] is a polynomial with zero constant term, then p(N) = {p(n) |
n ∈ N} is a set of recurrence.1

Theorem (Kamae-Mendes France) Let P be the set of primes. Then P± 1 are both sets of recurrence.2

Theorem If α is irrational, then {bn2αc | n ∈ N} is a set of recurrence.3

For many more examples of sets of recurrence, see [3].

We will now explore an interesting application of sets of recurrence to number theory. The upper density
of a set E ⊆ N is

d(E) = lim sup
N→∞

|E ∩ [1, N ]|
N

.

Consider the system (N,P(N), d, T ) where T (n) = n+ 1. Though it is not a measure preserving system
(d is not countably additive), it exhibits some of the same recurrence properties as one. For example, the
following is an exercise: given E ⊆ N with d(E) > 0, there exists an n ∈ N such that d (E ∩ (E − n)) > 0.

The connection between recurrence in measure preserving systems and in (N,P(N), d, T ) is made much
more precise by the following.

Theorem (Furstenberg’s Correspondence Principle) Let E ⊆ N with d(E) > 0. There exists a finite
measure preserving system (X,M, µ, T ) and a set A ∈M with µ(A) = d(E) such that for all n ∈ N,

µ
(
A ∩ T−nA

)
≤ d (E ∩ (E − n)) .

1Furstenberg’s proof (see [4]) utilizes the spectral theorem for unitary operators on Hilbert spaces. (To see the connec-
tion, note that µ(A∩T−nA) = 〈UnχA, χA〉 where Uf = f ◦T is a unitary operator on L2(X,µ).) Bergelson (see [1]) gives
an alternative proof utilizing a splitting of L2(X,µ) in the spirit of von Neumann’s proof of the mean ergodic theorem.

2Kamae and Mendes France in [5] show something stronger: P ± 1 are van der Corput sets. The fact that van der
Corput sets are sets of recurrence was “known to many in Jerusalem” around this time, according to Bergelson. Note that
P is not a set of recurrence since it misses 4N. In fact, it is known that P± a is not a set of recurrence for any a 6= ±1.

3Images of a wide range of generalized polynomials (polynomials involving floor functions) are sets of recurrence. See
[2], for example.



Corollary Let E ⊆ N with d(E) > 0, and let R be a set of recurrence. Then R ∩ (E − E) 6= ∅.4

Proof: By Furstenberg’s correspondence principle and the fact that R is a set of recurrence, there is an
r ∈ R such that d (E ∩ (E − r)) > 0. In particular, E ∩ (E − r) 6= ∅. But E ∩ (E − r) 6= ∅ if any only if
r ∈ E − E.

Let E ⊆ N with d(E) > 0. By the corollary, if R is a set of recurrence, we know that some element of
R will appear as a difference between elements of E. Each time a new set of recurrence is identified, we
learn more about differences in sets of integers with positive upper density!

Applying the first of the three theorems above, we have the following.

Theorem (Furstenberg) Let p(x) ∈ N[x] be a polynomial with zero constant term. If E ⊆ N with
d(E) > 0, then there is an n ∈ N such that p(n) ∈ E − E.5

The other two theorems above apply similarly: in a set E ⊆ N with d(E) > 0, we are guaranteed to find
differences of the form p− 1 and bn2αc for some p ∈ P, n ∈ N.

The most famous application of this connection is Furstenberg’s proof of Szemerédi’s theorem.

Theorem (Szemerédi) If E ⊆ N with d(E) > 0, then E contains arbitrarily long arithmetic progressions.

Furstenberg’s proof makes use of a (slightly) more general correspondence principle coupled with the
following much harder multiple recurrence theorem.

Theorem (Furstenberg) Let (X,M, µ, T ) be a finite measure preserving system, and let A ∈ M with
µ(A) > 0. For all k ∈ N, there exists an n ∈ N such that

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−(k−1)nA) > 0.
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4The converse is true: if R ⊆ N is such that for all E ⊆ N with d(E) > 0, R∩ (E−E) 6= ∅, then R is a set of recurrence.
5The special case p(n) = n2 was proven independently by Sárközy with harder analytic techniques.


