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This exposition grew from a talk I gave at Central European University in November, 2010. I’ve attempted
to reach the broadest mathematical audience by giving examples and motivating the proofs. Besides van
der Waerden’s theorem and Ramsey’s theorem, this note is self contained. A good general reference is
[2].

Introduction

Partition regularity is a topic in Ramsey theory. The basic idea is to take a set, partition it into (usually
finitely many) pieces, and try to say as much as possible about the pieces of the partition. Structure in
the pieces is usually described using structure from the original set.

Let N = {1, 2, 3, . . .} be the set of natural numbers. A partition of N into finitely many pieces will
be called a finite coloring of N and will be described by a (coloring) function c : N → {1, 2, . . . , r}.
The utility of this is twofold: coloring emphasizes partitions (no number gets two colors), and the word
monochromatic allows us to talk about a single color (piece of the partition) without specifying which one.

One of the earliest results in Ramsey theory was given by German mathematician Issai Schur in 1916:

Theorem (Schur, 1916). [7] In any finite coloring of N there exists a monochromatic solution to the
equation x+ y = z.

In terms of the general framework laid out in the first paragraph, Schur tells us that despite the com-
plexity of the finite partition of N, one of the pieces of the partition must contain a solution to the
equation x + y = z. To put it another way, solutions to x + y = z in N are resilient in the sense that
they cannot be separated by any finite partition.

Another celebrated result in the history of Ramsey theory was that of Dutch mathematician Bartel
Leendert van der Waerden in 1927:

Theorem (van der Waerden, 1927). [5] In any finite coloring of N there exist arbitrarily long
monochromatic arithmetic progressions.

Van der Waerden gives us another type of resilient structure in N, namely finite arithmetic progressions.
If we color N with finitely many colors and fix some finite pattern (or constellation) in N, then his result
gives us that the pattern must arise in a single color.

We now have two results concerning the structure of at least one of the pieces of a finite partition of N.
We might see one as describing a resilient algebraic structure (solutions to x+ y = z) and the other as
describing a resilient geometric structure (finite arithmetic progressions). Our aim will be to generalize
Schur’s result in order to say more about when solutions to certain linear equations are resilient.

We take a moment to prove Schur’s theorem. In search of a monochromatic solution to x+y = z, we will
translate a finite coloring on N into a finite edge coloring on the complete graph on n vertices, Kn. We
aim to do this in such a way that the existence of a monochromatic triangle will give us a monochromatic
solution to x + y = z. From here we will be able to apply one of the fundamental results in Ramsey
theory: if n is large enough, we are guaranteed to have a monochromatic triangle in the colored Kn.

Proof of Schur’s theorem. Suppose N is colored with r colors via c : N → {1, . . . , r}. For any n ≥ 1,
we identify the vertices of Kn with the integers {1, 2, . . . , n} and color the edge {i, j} for i 6= j with
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c(|i− j|). Ramsey’s theorem gives that if n is large enough (larger than Rr(3)), then Kn is guaranteed
to have a monochromatic triangle. Fix such a sufficiently large n.

A monochromatic triangle in Kn is exactly 1 ≤ i < j < k ≤ n such that the edges {i, j}, {i, k}, and
{j, k} have the same color. This means that x = k − j, y = j − i, and z = k − i are three positive
integers, all with the same color. We see immediately that x+ y = z, as desired.

Though we will rely on van der Waerden’s result later on, we will not prove it here. For a nice exposition,
see [6].

Partition regularity

Motivated by Schur’s result, we define an equation a1x1 + · · · + anxn = 0 with ai ∈ Z to be partition
regular over N, denoted PRN, if there is a monochromatic solution in any finite coloring of N.

Schur’s theorem is then exactly that the equation x1 +x2−x3 = 0 is partition regular over N. We called
the solutions to x1 +x2−x3 = 0 resilient; if a1x1 + . . .+ anxn = 0 is PRN then its solutions are resilient
in the same way, that is they cannot be separated by finite partitions.

The most natural direction now is to determine which equations are PRN. Richard Rado classified PRN
equations (and much more) in his thesis in 1933:

Theorem (Rado, 1933). [4] The equation a1x1+· · ·+anxn = 0 is PRN if and only if some non-empty
subsum of the coefficients {a1, . . . , an} is zero.

The nonempty subsums of a set A ⊂ Z are

subsum(A) =

{∑
x∈X

x | X ⊂ A nonempty

}
.

With this, Rado’s result is that a1x1 + · · ·+ anxn = 0 is PRN exactly when 0 ∈ subsum({a1, . . . , an}).

With this result, we see immediately that x1 + x2 − x3 = 0 is PRN since 0 = 1 − 1 is a subsum of the
coefficients. The related equation x1 + x2 − 2x3 = 0 is also PRN since 0 = 1 + 1− 2. Actually, solutions
to x1 +x2−2x3 = 0 are exactly 3 term arithmetic progressions, so van der Waerden’s theorem also gives
that x1 + x2 − 2x3 = 0 is PRN.

What about x1 + x2 − 3x3 = 0? Is it PRN? Since 0 /∈ subsum({1, 1,−3}), Rado’s theorem gives that
there exits a finite coloring of N in which there is not a monochromatic solution to x1 + x2 − 3x3 = 0.
What might such a coloring look like?

Consider the following coloring c5 : N → {1, 2, 3, 4}. If n is coprime to 5, then define c5(n) = n mod 5.
If n is divisible by 5 but not by 25, then define c5(n) = n/5 mod 5. In general, if 5 divides n evenly k
times but not k + 1 times, then we define c5(n) = n/5k mod 5.

Note that this coloring has the property that c5(5n) = c5(n) for all n ∈ N. This means that if we have
a monochromatic solution s1 + s2 − 3s3 = 0 and the si’s are all divisible by 5, then s1

5 + s2
5 − 3 s3

5 = 0 is
also a monochromatic solution.

Let’s assume for a contradiction that such a monochromatic solution exists, i.e. that there exists
s1, s2, s3 ∈ N monochromatic (with respect to c5) such that s1 + s2 − 3s3 = 0. By dividing out by

2



5 as many times as we can, we may assume that at least one of the si’s is coprime to 5.

Now consider the equation s1 + s2 − 3s3 ≡ 0 modulo 5. The fact that s1, s2, and s3 are monochromatic
is exactly that each is either equal to 0 modulo 5 or equal to a common value s ∈ {1, 2, 3, 4} modulo 5
which corresponds to their color. (Since at least one of the si’s is coprime to 5, at least one is equal to s
modulo 5.) Since s is coprime to 5, we may divide it out, yielding an equation of the form a ≡ 0 modulo
5 for some a ∈ subsum({1, 1,−3}). Since no non-empty subsum of {1, 1,−3} is equal to 0 or divisible
by 5, this is a contradiction, and no such monochromatic solution can exist.

Proof of Rado’s Theorem

To prove one direction of Rado’s theorem, we will need a generalization of the c5 coloring to any prime
p. Define cp : N→ {1, . . . , p− 1} as cp(n) = n/pk mod p when p divides n evenly k times but not k + 1
times. In the same way as c5, cp(pn) = cp(n) for all n ∈ N.

Now we can prove that if a1x1 + · · ·+anxn = 0 is PRN, then some non-empty subsum of the coefficients
is 0.

Proof of Rado’s theorem (⇒). Suppose for a contradiction that the equation E : a1x1+ · · ·+anxn = 0
with ai ∈ Z is PRN and that no non-empty subsum of the coefficients is zero. Let p be a prime which
does not divide any element of subsum({a1, . . . , an}), and color N with the cp coloring described above.

Since E is PRN, it has a monochromatic solution a1s1 + · · ·+ansn = 0. By dividing the si’s by common
factors of p (which does not change the color of the solution), we may assume that one of the si’s is not
divisible by p.

Now consider the equation a1s1 + · · ·+ ansn ≡ 0 modulo p. Since the si’s are monochromatic, they are
each either equal to 0 modulo p or equal to a common value s ∈ {1, . . . , p−1} modulo p. By dividing out
by s, we are left with an equation of the form a ≡ 0 modulo p for some a ∈ subsum({a1, . . . , an}). This is a
contradiction since 0 /∈ subsum({a1, . . . , an}) and p does not divide any element of subsum({a1, . . . , an}).

The other direction in Rado’s theorem is a bit more difficult. The following argument helps to simplify un-
derstanding the approach. Suppose that 0 is a subsum of coefficients of the equation a1x1+· · ·+anxn = 0;
by relabeling, we may assume a1 + · · ·+ aj = 0 for some 1 ≤ j ≤ n.

Now suppose that we have a solution a1s1 + · · ·+ ansn = 0. We see that for any d ∈ Z, a1(ds1) + · · ·+
an(dsn) = 0 is still a solution. Since a1 + · · ·+aj = 0, we have that for any c ∈ Z, a1(c+s1)+ · · ·+aj(c+
sj) + aj+1sj+1 + · · · + ansn = 0 is also a solution. Combining these facts, we have that one solution -
the si’s - has generated a whole family of solutions in N:

a1(c+ ds1) + · · ·+ aj(c+ dsj) + aj+1(dsj+1) + · · ·+ an(dsn) = 0 ∀ c, d ≥ 1

To prove Rado’s theorem, we need to find a monochromatic solution given an arbitrary finite coloring
of N. We will be able to guarantee, with the right tool, that the family of solutions above contains a
monochromatic solution. The right tool in this case is a corollary to van der Waerden’s theorem.

Corollary (to van der Waerden). Let k, s ≥ 1 be integers. In any finite coloring of N there exist
integers c, d ≥ 1 such that the set

{c, c+ d, c+ 2d, . . . , c+ (k − 1)d, sd}

is monochromatic.
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This corollary allows us to find a monochromatic k-term arithmetic progression along with an arbitrary
multiple s of the progression’s jump size d in the same color. The “shape” of this set is very similar to
the one we need for solutions to the equation above.

We are now ready to finish the proof of Rado’s theorem. We need to show that if 0 is a subsum of the
coefficients of an equation, then it has a monochromatic solution in any finite coloring of N.

Proof of Rado’s theorem (⇐). Let N be finitely colored and let E : a1x1 + · · ·+ anxn = 0 with ai ∈ Z
be such that 0 ∈ subsum({a1, . . . , an}). By relabeling, we may assume that a1 + · · · + aj = 0 for some
1 ≤ j ≤ n.

If j = n, then a1(1) + · · ·+ an(1) = 0 is a monochromatic solution, and we are done. Similarly if j < n
and aj+1 + · · · + an = 0, then xi = 1 for all 1 ≤ i ≤ n is still a monochromatic solution, and we are
done. We may assume that we are in neither of these two cases.

Define A = gcd(a1, . . . , aj) and B = aj+1 + · · ·+ an; we may assume j < n and B 6= 0 by the previous
paragraph. Since −BA is an integer multiple of gcd(a1, . . . , aj), basic number theory tells us that there
are λi ∈ Z, 1 ≤ i ≤ j such that −BA = λ1a1 + · · ·+ λjaj . If l ∈ Z, then

−BA = λ1a1 + · · ·+ λjaj = (λ1 + l)a1 + · · ·+ (λj + l)aj

since a1+· · ·+aj = 0. Thus by shifting the λi’s if necessary, we may assume that λi ∈ N for all 1 ≤ i ≤ j.

Now a solution to E in N comes from rewriting the equation −BA+BA = 0 with the work above:

a1(λ1) + · · ·+ aj(λj) + aj+1(A) + · · ·+ an(A) = 0.

Following the argument outlined above, we will now use the corollary to van der Waerden’s theorem to
find a monochromatic subset of N in which we can find a solution to E. Let k = 1 + maxi λi and s = A;
both are positive integers. Then the corollary to van der Waerden gives that there are integers c, d ≥ 1
such that the set {c, c+ d, c+ 2d, . . . , c+ (k − 1)d, sd} is monochromatic.

Since k is larger than all of the λ’s, we see that c + λid is the same color for all 1 ≤ i ≤ j. We have
finally that

a1(c+ λ1d) + · · ·+ aj(c+ λjd) + aj+1(Ad) + · · ·+ an(Ad) = 0

is a monochromatic solution to E in N, as desired.

Open problems

Despite having a nice classification of partition regular homogeneous equations over N, there still remain
a few natural loose ends. We will touch on two open problems; see [3] for a more in-depth discussion.

Problem 1. In the proof of Rado’s theorem, we showed that 0 ∈ subsum({a1, . . . , an}) for any PRN
equation E : a1x1 + · · · + anxn = 0 by considering the cp coloring for a certain prime p. We used the
fact that E was PRN to guarantee that it had a monochromatic solution in that specific cp coloring.

What this means is that we could have significantly relaxed our assumptions about the regularity of E
and still reached the same conclusion. For example, instead of assuming that E is PRN, we could have
assumed that it has a monochromatic solution in each cp coloring. An even weaker assumption would
have been that E has a monochromatic solution in a cp coloring for some prime p not dividing a subsum
of its coefficients.
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E has a monochromatic solution in any
finite coloring of N (E is PRN)

⇓
E has a monochromatic solution in

the cp coloring for every prime p
⇓

E has a monochromatic solution in the cp coloring for a prime
p not dividing any element of subsum({a1, . . . , an})

⇓
0 ∈ subsum({a1, . . . , an})

⇓
E is PRN

The last implication (by Rado’s theorem) gives that the 4 statements above are equivalent. In some
way, this means that partition regularity in the cp colorings is enough to guarantee partition regularity
in an arbitrary finite coloring.

This leads us to ask the following questions: Is there a more direct proof that partition regularity in the
cp colorings yields general partition regularity? In what sense, if any, do the cp colorings generate an
arbitrary finite coloring?

Problem 2 (Rado’s boundedness conjecture). Take an equation F : a1x1 + · · · + anxn = 0 for
which 0 /∈ subsum({a1, . . . , an}), and let p be a prime not dividing any element of subsum({a1, . . . , an}).
We know of a (p− 1)-coloring in which F does not have a monochromatic solution, namely cp.

Note, however, that the number of colors we use to “split” the solutions of F (p − 1) defined in this
way is not bounded above in terms of n, the number of variables of F . For example, let Fk be the
equation k!x1 − 2x2 + x3 = 0 for k ∈ N. Rado’s theorem gives that Fk is not PRN for any k ≥ 3.
Each Fk has n = 3 variables but the corresponding prime pk (one which does not divide any element of
subsum({k!,−2, 1})) is necessarily greater than k (which is independent of n).

What we’d like to be able to say is that n2 or 2n or even nn
n

colors is enough to be able to split the
solutions of F . In other words, we’d like to find a bound in terms of n on the number of colors needed
to split the solutions of an equation in n variables which is not PRN.

Rado put forward the following conjecture in 1933:

Rado’s boundedness conjecture. For any integer n ≥ 1, there exists an integer B(n) ≥ 1 such that
if a1x1 + · · ·+ anxn = 0 (ai ∈ Z) is not PRN, then there exists an r-coloring of N, r ≤ B(n), in which
F has no monochromatic solutions.

The n = 3 case of this problem was recently solved by Jacob Fox and Daniel Kleitman. They show that
if an equation a1x1 + a2x2 + a3x3 = 0 is not PRN, then there is a coloring of N with 24 colors or fewer
in which the equation does not have a monochromatic solution. See [1] for the details.

The n ≥ 4 case is open as of the time of writing this note.

References

[1] J. Fox, D. Kleitman, Abstract On Rados Boundedness Conjecture ,
http://www.math.ucsd.edu/ sbutler/seminar/FoxKleitman2.pdf

[2] R. Graham, B. Rothschild, J. Spencer, Ramsey Theory, Wiley, New York, 1990.

5



[3] N. Hindman, I. Leader, D. Strauss, Open problems in partition regularity, Comb. Prob. and Comp.
12 (2003), 571583.

[4] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), no. 1, 424-470.

[5] I. Schur, Uber die Kongruenz xm + ym ≡ zm (mod p), Jahresber Deutsch. Math. Verein. 25
(1916), 114-117.

[6] R. Swan, van der Waerden’s theorem on arithmetic progressions,
http://math.uchicago.edu/ swan/expo/vdW.pdf

[7] B. L. van der Waerden, Beweis einer Baudet’schen Vermutung, Nieuw Arch. Wiskunde 15 (1927),
212-216.

6


