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A central topic in ergodic theory is understanding measure preserving transformations of finite measure
spaces. In some cases, the body of results developed to this end may apply to transformations which are
not measure preserving. The existence of a finite invariant measure is one of those cases and is discussed
below. The primary reference is [3].

Let (X,M, µ) be a finite measure space and T : X −→ X be measurable (but not necessarily
measure preserving). Suppose there exists a finite measure λ on M which is T -invariant (that is,
λ(T−1E) = λ(E)) and which is equivalent to µ (write λ ∼ µ meaning λ(E) = 0 if and only if µ(E) = 0).
It is an exercise to verify the following hold:

• (Recurrence) If µ(E) > 0, then there exists an n ∈ N such that µ(E ∩ T−nE) > 0. All similar
results on multiple recurrence hold as well.

• (Pointwise Ergodic Theorem) For all f ∈ L∞(µ), there exists a T -invariant f∗ ∈ L1(µ) such that

for µ-a.e. x ∈ X, 1
N

∑N
1 f(T ix)→ f∗(x). This of course holds for all f ∈ L1(λ), but knowing this

is only helpful when we have some handle on the invariant measure λ.

• (Mean Ergodic Theorem) For all f ∈ L∞(µ), 1
N

∑N
1 UT f → PT f in L2(λ), where PT is the

orthogonal projection onto {f ∈ L2(λ) | f ◦ T = f}. Here again this holds for f ∈ L2(λ). It seems
that some handle on λ is necessary to make use of this result.

Much is gained by having the existence (and especially a description) of an equivalent, finite invariant
measure. The question is: when do such measures exist? For simplicity, we will assume that T is
invertible. Also, without loss of generality (see [5]), we may assume that T is non-singular; that is, if
µ(E) = 0, then µ(TE) = µ(T−1E) = 0.

Given a finite measure space (X,M, µ) and an invertible, non-singular, measurable transfor-
mation T : X −→ X, when does there exist a finite measure λ on (X,M) which is T -invariant
and equivalent to µ?

A complete solution to this problem is a characterization of those systems (X,M, µ, T ) which admit
such a λ. To keep from repeating, make the following abbreviation.

Inv: There exists a finite measure λ on (X,M) which is T -invariant and equivalent to µ.

In what follows, we outline 4 different complete solutions.

1. The first solution was given by Eberhard Hopf in 1932. We introduce an equivalence relation on
M by writing E ∼ F if and only if there exist countable partitions E = ∪iEi, F = ∪iFi, and a sequence
of integers (ni)i such that TniEi = Fi. In this case, we say that E and F are equivalent under countable
decomposition. A set is incompressible if it is not equivalent to a proper subset of itself; in other words,
E is incompressible if E ∼ F and F ⊆ E imply that µ(E \ F ) = 0.

Theorem 1 (Hopf [6]): Inv if and only if X is incompressible.

The incompressibility of X is clearly necessary for the existence of an invariant measure; the reader is
referred to Hopf’s original argument for sufficiency. This solution paints a nice geometric picture: if
T does not “shrink” sets with respect to µ (in this countable partition sense), then there is a way to
measure sets which is invariant with respect to T . The problem here is that there are practically no
tools for proving the incompressibility of a space.

2. As noted above, if Inv, then a version of Birkhoff’s pointwise ergodic theorem holds for µ and T .
Thus a necessary condition for Inv is that for all E ∈M, 1

N

∑N
1 χE ◦ T i converges µ-a.e.. It turns out



that this condition is also sufficient.

Theorem 2 (Dowker [1]): Inv if and only if for all E ∈M, 1
N

∑N
1 χE ◦ T i converges µ-a.e..

Proof (sketch). Suppose that for every E ∈ M, 1
N

∑N
1 χE ◦ T i converges µ-a.e., and let fE ∈ L1(µ) be

its limit. Define

λ(E) =

∫
X

fE dµ.

(This definition is inspired from the necessary condition; if Inv, then fE = Eλ(χE |F), where F is the
σ-algebra generated by T -invariant sets, and so λ(E) =

∫
X
fE dλ.) We then show that λ is a finite,

T-invariant measure (making use of the Vitali-Hahn-Saks Theorem) which is equivalent to µ. The reader
is referred to [3] for the details.

This solution is also difficult to apply because it requires one to check pointwise almost everywhere
convergence for a large class of functions. It does, however, lend to the understanding of an invariant
measure: the averages 1

N

∑N
1 χE ◦ T i measure the distribution of orbits of T , and if they behave nicely,

we may use them to measure sets in a T-invariant way.

3. Instead of considering averages along orbits of points, we may consider recurrence in orbits of sets.
Poincaré recurrence (as well as multiple recurrence) holds in systems for which Inv; we are led to ask
whether these recurrence theorems are sufficient for Inv.

Call T conservative if for all E ∈ M with µ(E) > 0, there exists an n ∈ Z such that µ(E ∩ TnE) > 0;
in other words, conservative transformations are exactly those for which Poincaré recurrence holds. The
question now is whether Inv is equivalent to a system being conservative. The answer is no, as illustrated
by the following example.

Claim: There exist conservative systems in which Inv does not hold.

Proof (Halmos [5]). Consider a measure space (R,B, η) where B is the σ-algebra of Borel subsets of R
and η is a finite measure equivalent to the standard Lebesgue measure m. (Any η will do; take, for
example, η(E) =

∫
E

1
x2+1 dm(x).) Let T be an invertible, ergodic (this means: m(E ∩ B−1E) = 0

implies m(E) = 0 or m(R \ E) = 0), measure preserving transformation of (X,B,m). We claim that T
on (R,B, η) is conservative but that Inv does not hold.

First we show that T is conservative. Note that T is η-ergodic since it is m-ergodic and η ∼ m. If
(R,B, η, T ) is not conservative, then there exists a set E ∈ B with η(E) > 0 such that the translates of
E, TnE for n ∈ Z, are all disjoint. Since η is non-atomic, there exists an F ⊆ E with 0 < η(F ) < η(E).
Then ∪nTnF is a non-trivial, T-invariant set, a contradiction with the ergodicity of T .

Next we show that Inv does not hold. Suppose that λ is a finite, T -invariant measure equivalent to
η. Since η ∼ m, λ ∼ m. By Radon-Nikodym, there exists an f ∈ L1(m) such that for all E ∈ B,
λ(E) =

∫
E
f dm. Since λ is T -invariant,∫

E

f ◦ T dm =

∫
TE

f dm = λ(TE) = λ(E) =

∫
E

f dm.

This holds for all E ∈ B, therefore f is T -invariant. Since T is ergodic, f is a.e. constant; since
f ∈ L1(m), f = 0. This implies λ = 0, a contradiction with λ ∼ m.

A slightly stronger recurrence condition, however, does suffice for Inv. A set which does not recur
at all is called wandering. Generalizing, a set with infinitely many disjoint translates is called weakly
wandering ; that is, E ∈M is weakly wandering if there exists an infinite sequence of integers (ni)i such
that when i 6= j, µ(TniE ∩ TnjE) = 0. By the pigeon-hole principle, weakly wandering sets of positive



measure do not exist in finite measures spaces for which Inv. It is a beautiful fact that the converse is
also true.

Theorem 3 (Hajian-Kakutani [4]): Inv if and only if there are no weakly wandering sets of positive
measure.

The condition that there are no weakly wandering sets of positive measure is exactly that for all E ∈M
with µ(E) > 0 and all (ni)i ⊆ Z, there exist i 6= j such that µ(TniE ∩ TnjE) > 0. Hajian and Kaku-
tani’s result says that if large sets remain large under “enough” translates of T , then there exists an
equivalent, finite invariant measure. The proof of Theorem 3 will follow immediately from the following
lemma combined with a result of Dowker discussed below.

Lemma (Hajian-Kakutani [4]) Suppose µ(E) > 0 and lim infn µ(TnE) = 0. Then for all ε > 0, there
exists an Fε ⊆ E with µ(Fε) < ε such that E \ Fε is weakly wandering.

Proof of Lemma (sketch). Note that because T is non-singular, for all n ∈ Z, Tnµ ∼ µ. We create an
increasing sequence (ni)i≥0 ⊆ N such that for all i ∈ N and all 0 ≤ j < i, µ(Tni−njE) < ε

i2i . Let

Fε = E ∩

 ∞⋃
i=1

i−1⋃
j=0

Tni−njE

 .

It is straightforward to check that µ(Fε) < ε and that E \ Fε is weakly wandering along (ni)i.

4. The expression lim infn µ(TnE) gives a lower bound on the eventual size of the translates of E
and quantifies the “enough” appearing above. If Inv and µ(E) > 0, then it is an exercise to show that
lim infn µ(TnE) > 0; this condition also suffices for Inv.

Theorem 4 (Dowker [2]): Inv if and only if for all E ∈M with µ(E) > 0, lim infn µ(TnE) > 0.

The proof utilizes Banach limits and a result for extending a finitely additive measure to a σ-additive one.
The reader is referred to [3] for the details. This result was strengthened by Sucheston in [7]. He showed

that it suffices for Inv that for all E ∈ M with µ(E) > 0, lim supN−M→∞
1

N−M
∑N−1
M µ(T iE) > 0.

The reader is referred to Sucheston’s paper for the details.
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