Lecture 7

Chapter 25

Today we are going to discuss:

Chapter 25:

- Section 25.1. Electric Potential Energy
- > Section 25.2. The potential energy of a point charge

New Idea

Let's introduce *scalar quantities* instead of a FORCE and a FIELD

Let's define a conservative force and give an idea of PE Consider different paths $U_f = 5J$ between two points in a field W= ds Recall for Physics I, a work done by a force $\vec{F} \cdot \vec{ds}$ field ₩^{__} W=5 If a work done by a force is path independent, then this force is called LIBERAL *conservative* (since it leads to conservation of mechanical energy)

PE idea: That is what we have in our example(Lowell-Andower-5bucks). So, you can "attach" this number to the final point and give this number 5 a fancy name – the potential energy (PE) (U_f =5J) with respect to the initial point, where we can assume PE to be zero (the reference point). For every conservative force, a potential energy can be introduced.

Since the gravitational and electrical forces are conservative forces,

corresponding potential energies can be introduced.

PHYS.1440 Lecture 7 *A. Danylov* Department of Physics and Applied Physics UMASS

Electric Potential Energy is an <u>energy of interaction</u>, so there must be at least <u>two interacting</u> electric objects.

Potential energy of q in a uniform electric field

When you work with a potential energy, remember where your reference point/level is: here $U_0=0$ is at the negative electrode.

ConcepTest

Potential energy

Two positive charges are equal. Which has more electric potential energy?

- A) Charge A
- B) Charge B
- **C)** They have the same potential energy
- D) Both have zero potential energy

ConcepTest

Potential energy

A) Charge A

B) Charge B

Two negative charges are equal. Which has more electric potential energy?

C) They have the same potential energy

D) Both have zero potential energy

Potential energy of two point charges

The potential energy of two point charges

Electrostatic potential energy To i dr f Eesquous to a field i i tion for the created by Q. Letrs calculate work down by Fe as q moves from an initial to a final point: $W = \left(\vec{F_e} \cdot d\vec{r} = \| \vec{F_e} \uparrow \uparrow d\vec{r} \| = \int \vec{F_e} dr = \| \vec{F_e} = k \frac{98}{7} \| = 100 \text{ J}^2 = 100 \text{ J}^2$ $= \int k \frac{q}{r^{2}} dr = -\frac{kq}{q} \left[r^{2} = -\left[\frac{kq}{r} - \frac{kq}{r} \right] \right]$ 10 We know black W=-DU ; U-pot. energy, 50 $-[U(r) - U_{o}] = -[\frac{kg8}{4} - \frac{kg8}{4}]$ Les your remember only différences in U have physical meaning. So we are free to choose any reference point. H's common to choose U(r) to be zero at r=0. Kef point 10-0 U=0, 50 U(r) - 10° = kg8 - kg8 - kg8° finally U(r) = k 9 B pot charges of the system of two charges 8,9.

 $\begin{array}{c} 4 < 0 & 8 < 0 \\ 4 < 0 & 8 < 0 \\ 7 & 9 < 0 & 9 > 0 \\ 7 & 9 < 0 & 9 > 0 \\ 8 & > 0 & 9 < 0 \\ 7 & 9 & 0 & 9 < 0 \\ 8 & > 0 & 9 < 0 \\ 7 & 9 & 0 & 9 < 0 \end{array}$ $U(r)=\frac{kqQ}{r}$

This is explicitly the energy of the system, not the energy of just q or Q.

Note that the potential energy of two charged particles approaches zero as $r \rightarrow \infty$.

ConcepTest

A positive charge moves as shown. Its kinetic energy

A) Increases.

C) Decreases.

B) Remains constant.

The potential energy of a positive charge decreases in the direction of \vec{E} . U increases $\Delta U > 0$ $-\Delta U = W = \Delta K$ Total energy is constant $\Delta K < 0$ K decreases

