Lecture 7

Chapter 25

Electric Potential Energy

Course website:

https://sites.uml.edu/andriy-danylov/teaching/physics-ii/

PHYS. 1440 Lecture 7 A.Danulou
Department of Physics and Applied Physics

Today we are going to discuss:

Chapter 25:

$>$ Section 25.1. Electric Patential Energy
$>$ Section 25.2. The potential encrgy of a point charge

New Idea

So far, we used vector quantities:

1. Electric Force (F) $F_{2 \text { on } 1}=\frac{K\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}$
2. Electric Field (E) $\overrightarrow{\boldsymbol{E}}=\frac{\overrightarrow{\boldsymbol{F}}_{\text {on } q}}{\boldsymbol{q}}$

But, as you know, it is not easy to deal with vectors

Let's introduce scalar quantities instead of a FORCE and a FIELD

Let's define a conservative force and give an idea of PE

Recall for Physics I, a work done by a force约 $W=\int \vec{F} \cdot \overrightarrow{d s}$

If a work done by a force is path independent, then this force is called conservative (since it leads to conservation of mechanical energy)

PE idea: That is what we have in our example(Lowell-Andower-5bucks). So, you can "attach" this number to the final point and give this number 5 a fancy name - the potential energy (PE) $\left(\mathrm{U}_{\mathrm{f}}=5 \mathrm{~J}\right)$ with respect to the initial point, where we can assume PE to be zero (the reference point).
For every conservative force, a potential energy can be introduced.

Since the gravitational and electrical forces are conservative forces, corresponding potential energies can be introduced.

Electrostatics

This fall can be described using a gravitational force (vector quantity), which describes an interaction between the Earth and the cat.

$$
F_{g r a v}=m g \quad \square \quad U_{g r a v}=m g y
$$

Since the gravitational force is a conservative force, a gravitational potential energy (scalar quantity) can be introduced.

Goal 1 is to introduce this:

$$
F_{e l}=q E \quad \square U=q E s
$$

Let's derive these electric PE:

The case of two point charges
Goal 2 is to intraduce this

$$
F_{e}=\mathrm{k} \frac{q_{1} q_{2}}{r^{2}} \quad \mathrm{U}(\mathrm{r})=\frac{\mathrm{k} q_{1} q_{2}}{\mathrm{r}}
$$

Electric Potential Energy is an energy of interaction, so there must be at least two interacting electric objects.

Potential energy of g in
a uniform electric field (gin a capacitor)

Potential energy of \boldsymbol{q} in a uniform electric field

Consider a charge q inside a capacitor.
It moves from an initial point s_{i} to a final point s_{f}
There is a constant force $F=q E$ acting on q
SmartCat ${ }^{\circledR}$
The work done on q is: $\quad W=\int_{i}^{f} \vec{F} \cdot d \vec{s}=q \int_{i}^{\vec{E} \uparrow \downarrow d \vec{s}} \vec{E} \cdot d \vec{s}=-q \int_{i}^{E} E d s=-q E \int_{i}^{f} d s=-q E\left(s_{f}-s_{i}\right)$

Recall from Physics I $-\Delta U=W=\Delta K$

$$
\begin{aligned}
-\Delta U=-\left(U_{f}-U_{i}\right) & =-q E\left(s_{f}-s_{i}\right) \\
U_{f}-U_{i} & =q E s_{f}-q E s_{i}
\end{aligned}
$$

$$
U_{f}-U_{i}^{\prime}=q E s_{f}-\overrightarrow{-\rightarrow} q E s_{i}
$$

Electric potential energy of charge q and a charged capacitor $\quad U=q E s$

When you work with a potential energy, remember where your reference point/level is: here $\mathrm{U}_{0}=0$ is at the negative electrode. \qquad

Potential energy

Two positive charges are equal. Which has more electric potential energy?

A) Charge A

B) Charge B
C) They have the same potential energy
D) Both have zero potential energy

The potential energy of a positive charge decreases in the direction of \vec{E}.

Potential energy

A) Charge A

Two negative charges are equal. Which has more electric potential energy?
B) Charge B
C) They have the same potential energy
D) Both have zero potential energy

Patential energy of twa point charges

The potential energy of two point charges

PHYS. 1440 Lecture 7 A. Danylou
Department of Physics and Applied Physics

ConcepTest

Potential energy

A positive and a negative charge are released from rest in vacuum.
They move toward each other. As they do:
A) A positive potential energy becomes more positive.
B) A positive potential energy becomes less positive.
C) A negative potential energy becomes more negative.
D) A negative potential energy becomes less negative.
E) A positive potential energy becomes a negative potential energy.

$$
\boldsymbol{U}(\boldsymbol{r})=\frac{\boldsymbol{k} \boldsymbol{q} \boldsymbol{Q}}{\boldsymbol{r}} \text { Opposite signs, so } U \text { is Negative. }
$$

A proton is fired from far away at a 1.0 - mm -diameter glass sphere that has been charged to +100 nC . What initial speed must the proton have to just reach the surface of the glass?

Example 25.2

$$
\begin{aligned}
& u_{i}=\frac{k q s}{r}=0 \\
& K_{i}=\frac{1}{2} m v_{0}^{2},
\end{aligned}
$$

$$
U_{f}=\frac{k q Q}{R}
$$

$$
K_{f}=0
$$

it reaches with $y_{F}=0$
Total energy is conserved, ie

$$
\begin{aligned}
& K_{i}+U_{i}^{2}=K \mathcal{F}^{0}+U_{f} \\
& \frac{1}{2} m v_{0}^{2}=\frac{K q Q}{R} \Rightarrow v_{0}=\sqrt{\frac{2 K q Q}{m \cdot R}}=1.86 .10^{7} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

图

ConcepTest

Potential energy

A positive charge moves as shown. Its kinetic energy
A) Increases.
B) Remains constant.
C) Decreases.

The potential energy of a positive charge decreases in the direction of \vec{E}.

$$
\boldsymbol{U} \text { increases } \Delta U>0
$$

$$
\sqrt{7}-\Delta U=W=\Delta K
$$

Total energy is constant $-\Delta U=\Delta K$

$$
\Delta K<0
$$

K decreases

