Journal Articles

Articles published in refereed journals

[1]            P. Wang, N. Aliheidari, X. Zhang, A. Ameli; Strong and thermally insulating ultralight foams based on nanocrystalline cellulose; Carbohydrate Polymers (1-Year Impact Factor, IF:604), 2019; 218, 103-111; doi.org/10.1016/j.carbpol.2019.04.059

[2]            D. Thaler, N. Aliheidari and A. Ameli; Mechanical, Electrical, and Piezoresistivity Behaviors of Additively Manufactured Acrylonitrile Butadiene Styrene/Carbon Nanotube Nanocomposites, Smart Materials and Structures (IF:3.54), Accepted Manuscript online 29 May 2019

[3]            A. Naji, B. Karuse, P. Pötschke and A. Ameli; Extruded polycarbonate/di-allyl phthalate composites with ternary conductive filler system for bipolar plates of polymer electrolyte membrane fuel cells, Submitted to Smart Materials and Structures (IF:3.54), 2019; 28(6), 064004; doi.org/10.1088/1361-665X/ab19cb

[4]            G. Petrossian, C.J. Hohimer and A. Ameli; Highly-loaded thermoplastic polyurethane/lead zirconate titanate composite foams with low permittivity fabricated using expandable microspheres, Polymers (IF: 3.14), 2019; 11 (2), 280; https://doi.org/10.3390/polym11020280

[5]            J. Christ, N. Aliheidari, P. Pötschke and A. Ameli; Bidirectional and stretchable piezoresistive sensors enabled by multimaterial 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites; Polymers (IF:3.14) 2019; 11, 11; doi:10.3390/polym11010011

[6]            A Naji, B. Krause, P. Pötschke and A. Ameli; Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications, Polymer Composites (IF:2.27); in print, doi: 10.1002/pc.25169

[7]            N. Aliheidari, J. Christ, R. Tripuraneni, S. Nadimpalli and A. Ameli; Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process; Materials and Design (IF:4.52), 2018; 156, 351-361, doi:10.1016/j.matdes.2018.07.001

[8]            M. Nadgorny and A. Ameli; Functional polymers and nanocomposites for 3D printing of smart structures and devices; ACS Applied Materials and Interfaces (IF:8.45), 2018; 10, 17489-17507, doi:10.1021/acsami.8b01786

[9]            S. Wang, A. Ameli, V. Shaayegan, Y. Kazemi, Y. Huang, H.E. Naguib, C.B. Park; Modelling of rod-like fillers’ rotation and translation near two growing cells in conductive polymer composite foam processing; Polymers  (IF:3.14) 2018; 10, 261 , doi:10.3390/polym10030261

[10]         Y.  Kazemi, A.R. Kakroodi, A. Ameli, T. Filleter and C.B. Park; Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance, RSC Journal of Materials Chemistry C (IF:5.26), 2018; 6, 350-359, doi:10.1039/C7TC04501H

[11]         Y. Kazemi, A.R. Kakroodi, S. Wang, A. Ameli, T. Filleter, P. Pötschke and C.B. Park; Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide, Polymer (United Kingdom) (IF:3.68), 2017; 129, 179-188, doi:10.1016/j.polymer.2017.09.056 

[12]         J. Christ, N. Aliheidari, A. Ameli and P. Pötschke; 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites; Materials and Design (IF:4.00), 2017; 131, 394-401, doi:10.1016/j.matdes.2017.06.011

[13]         N. Aliheidari, R. Tripuraneni, A. Ameli and S. Nadimpalli; Fracture resistance measurement of fused deposition modeling 3D printed polymers; Journal of Polymer Testing (IF:2.35), 2017; 60, 94-101, doi: 10.1016/j.polymertesting.2017.03.016

[14]         A. Ameli, Y. Kazemi, S. Wang, C.B. Park and P. Pötschke; Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams, Composites Part A Applied Science and Manufacturing (IF:3.72), 2017; 96, 28-36, doi: 10.1016/j.compositesa.2017.02.012

[15]         N. Hossieny, V. Shaayegan, A. Ameli, M. Saniei and C.B. Park; Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology, Polymer (IF:3.56), 2017; 112, 208-218, doi: 10.1016/j.polymer.2017.02.015

[16]         (Invited) O.R. Patil, A. Ameli and N.V. Datla; Predicting environmental degradation of adhesive joints using a cohesive zone finite element model based on accelerated fracture tests, International Journal of Adhesion and Adhesives (IF: 1.96), 2017; 76: 540-560, doi: 10.1016/j.ijadhadh.2017.02.007

[17]         A. Javdani, V. Pouyafar, A. Ameli and A.A. Volinsky; Blended powders semisolid forming of Al7075/Al2O3 composites: Investigation of microstructure and mechanical properties, Materials and Design (IF:3.50), 2016;109:57-67, doi:10.1016/j.matdes.2016.07.042

[18]         A. Ameli, M. Arjmand, P. Pötschke, B. Krause and U. Sundararaj; Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped CNT/PVDF nanocomposites, Carbon (IF:6.20), 2016;106:260-278, doi:10.1016/j.carbon.2016.05.034

[19]         V. Shaayegan, A. Ameli, S. Wang and C.B. Park; Experimental observation and modeling of fiber rotation and translation during foam injection molding of polymer composites, Composites Part A: Applied Science and Manufacturing (IF:3.72), 2016;88:67-74, doi:10.1016/j.compositesa.2016.05.013

[20]         (Featured as Back Cover Photo) M. Arjmand, A. Ameli, U.-T. Sundararaj; Employing nitrogen doping as innovative technique to improve broadband dielectric properties of carbon nanotube/polymer nanocomposites, Macromolecular Materials and Engineering (IF:2.78), 2016;301:555-565, doi:10.1002/mame.201500365

[21]         A.R. Kakroodi, Y. Kazemi, W. Ding, A. Ameli, C.B. Park; Poly(lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability, Biomacromolecules (IF:5.75), 2015; 16: 3925-3935, doi: 10.1021/acs.biomac.5b01253

[22]         M. Nofar, A. Ameli and C.B. Park; A novel technology to manufacture biodegradable polylactide bead foam products, Materials and Design (IF:3.50), 2015; 83:413-421, doi: 10.1016/j.matdes.2015.06.052

[23]         M. Nofar, A. Ameli and C.B. Park; Development of polylactide bead foams with double crystal melting peaks, Polymer (IF:3.56), 2015; 69: 83-94, doi: 10.1016/j.polymer.2015.05.048

[24]         A. Ameli, S. Wang, Y. Kazemi, C.B. Park and P. Pötschke, A facile method to increase the charge storage capability of polymer nanocomposites, Nano Energy (IF:10.33), 2015; 15: 54-65, doi: 10.1016/j.nanoen.2015.04.004

[25]         A. Ameli, M. Nofar, D. Jahani and C.B. Park; Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming properties, Chemical Engineering Journal (IF:5.3), 2015; 262: 78-87, doi: 10.1016/j.cej.2014.09.087

[26]         (Featured as Back Cover Photo) D. Jahani, A. Ameli, M. Saniei, W. Ding, C.B. Park and H. Naguib; Characterization of the structure, acoustic property, thermal conductivity, and mechanical property of highly expanded open-cell polycarbonate foams, Macromolecular Materials and Engineering (IF:2.78), 2015; 300: 48-56, doi: 10.1002/mame.201400125

[27]         A. Ameli, M. Nofar, S. Wang and C.B. Park; Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding, ACS Applied Materials and Interfaces (IF:6.72), 2014; 6(14): 11091-11100, doi: 10.1021/am500445g

[28]         A. Ameli, M. Nofar, C.B. Park, P. Pötschke and G. Rizvi; Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold, Carbon (IF:6.20), 2014; 71: 206-217, doi: 10.1016/j.carbon.2014.01.031

[29]         A. Ameli, D. Jahani, M. Nofar, P.U. Jung and C.B. Park; Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties, Composites Science and Technology (IF:3.57) 2014; 60: 88-95, doi: 10.1016/j.compscitech.2013.10.019

[30]         S.H. Mahmood, A. Ameli, N. Hossieny and C.B. Park; The interfacial tension of molten polylactide in supercritical carbon dioxide, Chemical Thermodynamics (IF:2.68), 2014; 65: 69-76, doi: 10.1016/j.jct.2014.02.017

[31]         M. Nofar, A. Ameli, and C.B. Park; The thermal behavior of polylactide with different D-lactide content in the presence of dissolved CO2, Macromolecular Materials and Engineering (IF:2.78) 2014; 299 (10): 1232-1239 doi: 10.1002/mame.201300474

[32]         D. Jahani, A. Ameli, P.U. Jung, M.R. Barzegari, C.B. Park and H. Naguib; Open-cell cavity-integrated injection-molded acoustic polypropylene foams, Materials and Design (IF:3.50), 2014; 53: 20-28, doi: 10.1016/j.matdes.2013.06.063

[33]         M. Nofar, A. Tabatabaei, A. Ameli and C.B. Park; Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He, Polymer (IF:3.56), 2013; 54: 6471-6478, doi: 10.1016/j.polymer.2013.09.044

[34]         A. Ameli, P.U. Jung and C.B. Park; Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams, Carbon (IF:6.20) 2013; 60: 379-391, doi:10.1016/j.carbon.2013.04.050

[35]         N. Hossieny, A. Ameli and C.B. Park; Characterization of expanded polypropylene bead foams with modified steam-chest molding, Industrial and Engineering Chemistry Research (IF:2.59), 2013; 52: 8236–8247, doi: 10.1021/ie400734j

[36]         A. Ameli, P.U. Jung and C.B. Park; Through-plane electrical conductivity of injection-molded polypropylene/carbon fiber composite foams, Composites Science and Technology (IF:3.57), 2013; 76: 37-44, doi: 10.1016/j.compscitech.2012.12.008

[37]         A. Ameli, D. Jahani, M. Nofar, P.U. Jung and C.B. Park; Processing and characterization of solid and foamed injection-molded polylactide with talc, Journal of Cellular Plastics (IF:1.66), 2013; 49: 351-374, doi: 10.1177/0021955X13481993

[38]         G. Jhin, S. Azari, A. Ameli, N.V. Datla, M. Papini and J.K. Spelt; Crack growth rate and crack path in adhesively bonded joints: Comparison of creep, fatigue and fracture, Adhesion and Adhesives (IF:1.77) 2013; 46: 74-84, doi: 10.1016/j.ijadhadh.2013.05.009

[39]         S. Azari, A. Ameli, M. Papini and J.K. Spelt; Adherend thickness influence on fatigue behavior and fatigue failure prediction of adhesively bonded joints, Composites Part A: Applied Science and Manufacturing (IF: 3.72), 2013; 48: 181-191, doi: 10.1016/j.compositesa.2013.01.020

[40]         A. Ameli, S. Azari, M. Papini and J.K. Spelt; Characterization and prediction of fracture properties in hygrothermally degraded adhesive joints: An open-faced approach, Adhesion Science and Technology (IF:0.96), 2012; 27: 1080-1103, doi: 10.1080/01694243.2012.730028

[41]         S. Azari, A. Ameli, M. Papini and J.K. Spelt; Analysis and design of adhesively bonded joints for fatigue and fracture loading: a fracture-mechanics approach, Adhesion Science and Technology (IF:0.96), 2012; 27: 1681-1711, doi :10.1080/01694243.2012.748434

[42]         S. Azari, A. Ameli, N.V. Datla, M. Papini and J.K. Spelt; Effect of substrate modulus on the fatigue behavior of adhesively bonded joints, Materials Science and Engineering A (IF:2.57) 2012; 534: 594-602, doi: 10.1016/j.msea.2011.12.014

[43]         A. Ameli, N.V. Datla, S. Azari, M. Papini and J.K. Spelt; Prediction of environmental degradation of closed adhesive joints using data from open-faced specimens, Composite Structures (IF:3.32) 2012; 94: 779-786, doi: 10.1016/j.compstruct.2011.09.017

[44]         N.V. Datla, A. Ameli, S. Azari, M. Papini and J.K. Spelt; Effects of hygrothermal aging on the fatigue behavior of two toughened epoxy adhesives, Engineering Fracture mechanics (IF:1.77), 2012; 79: 61-77, doi: 10.1016/j.engfracmech.2011.10.002

[45]         A. Ameli, M. Papini and J.K. Spelt; Evolution of crack path and fracture surface with degradation in rubber-toughened epoxy adhesive joints: Application to open-faced specimens, Adhesion and Adhesives (IF:1.77) 2011; 31: 530-540, doi: 10.1016/j.ijadhadh.2011.04.007

[46]         A. Ameli, S. Azari, M. Papini and J.K. Spelt; Crack path selection in the fracture of fresh and degraded epoxy adhesive joints, Engineering Fracture Mechanics (IF:1.77), 2011; 78: 1986-2003, doi: 10.1016/j.engfracmech.2011.03.020

[47]         A. Ameli, M. Papini and J.K. Spelt; Hygrothermal degradation of two rubber-toughened epoxy adhesives: Application of open-faced fracture tests, Adhesion and Adhesives (IF:1.77), 2011; 31: 9-19, doi: 10.1016/j.ijadhadh.2010.10.001

[48]         A. Ameli, M. Papini, J.A. Schroeder and J.K. Spelt; Fracture R-curve characterization of toughened epoxy adhesives, Engineering Fracture Mechanics (IF:1.77) 2010;  77: 521-534

[49]         A. Ameli, N.V. Datla, M. Papini and J.K. Spelt; Hygrothermal properties of highly toughened epoxy adhesives, Adhesion (IF:1.42) 2010; 86: 698-725, doi: 10.1080/00218464.2010.482405

[50]         A. Ameli, M. Papini and J.K. Spelt; Fracture R-curve of a toughened epoxy adhesive as a function of irreversible degradation, Materials Science and Engineering A (IF:2.65), 2010; 527: 5105-5114, doi: 10.1016/j.msea.2010.04.099

[51]         R. Bihamta, A. Ameli, M.R. Movahhedy and M. Mashregi; A comparative study on the radial and indentation forging of thick-walled tubes, Forming Processes 2007; 10: 179-194, doi: 10.3166/ijfp.10.179-194

[52]         A. Ameli and M.R. Movahhedy; A parametric study on residual stresses and forging load in radial forging process, Advanced Manufacturing Technology (IF:1.46) 2007; 33: 7-17, doi: 10.1007/s00170-006-0453-2