1. Check the distributive laws for $U$ and $\cap$, and DeMorgan's laws.
2. Determine which of the following statements are true for all sets $A, B, C$, and $D$. If a double implication fails, determine whether one or the other of the possible implications holds. If an equality fails, determine whether one or the other of the possible inclusions holds.
(a) $A \leftrightharpoons C$ and $B \supset C \longleftrightarrow(A \cup B) \supset C$.
(b) $A \supset C$ or $B \supset C \Longleftrightarrow(A \cup B) \supset C$.
(c) $A \supset C$ and $B \supset C \Longleftrightarrow(A \cap B) \supset C$.
(d) $A \supset C$ or $B \supset C \longleftrightarrow(A \cap B) \supset C$.
(e) $A-(A-B)=B$.
(f) $A-(B-A)=A-B$.
(g) $A \cap(B \cdots C)=(A \cap B)-(A \cap C)$.
(h) $A \cup(B-C)=(A \cup B)-(A \cup C)$.
(i) $(A \cap B) \cup(A-B)=A$
(j) $A \subset C$ and $B \subset D \Rightarrow(A \times B) \subset(C \times D)$.
(k) The converse of ( j ).
(l) The converse of (j), assuming that $A$ and $B$ are nonempty.
(m) $(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$.
(n) $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
(o) $A \times(B-C)=(A \times B)-(A \times C)$.
(p) $(A-B) \times(C-D)=(A \times C-B \times C)-A \times D$.
(q) $(A \times B)-(C \times D)=(A-C) \times(B-D)$.
3. (a) Write the contrapositive and converse of the following statement: "If $x<0$, then $x^{2}-x>0$," and determine which (if any) of the three statements are true.
(b) Do the same for the statement "If $x>0$, then $x^{2}-x>0$."
4. Let $A$ and $B$ be sets of real numbers. Write the negation of each of the following statements:
(a) For every $a \in A$, it is true that $a^{2} \in B$.
(b) For at least one $a \in A$, it is true that $a^{2} \in B$
(c) For every $a \in A$, it is true that $a^{2} \notin B$.
(d) For at least one $a \notin A$, it is true that $a^{2} \in B$.
5. Let $\mathbb{Q}$ be a nonempty collection of sets. Determine the truth of each of the following statements, and of their converses:
(a) $x \in \cup_{A \in Q} A \Rightarrow x \in A$ for at least one $A \in \mathbb{Q}$.
(b) $x \in \bigcup_{A \in \mathbb{Q}} A \Rightarrow x \in A$ for every $A \in \mathbb{Q}$.
(c) $x \in \bigcap_{A \in Q} A \Rightarrow x \in A$ for at least one $A \in Q$.
(d) $x \in \bigcap_{A \in \mathbb{Q}} A \Rightarrow x \in A$ for every $A \in \mathbb{Q}$.
6. Write the contrapositive of each of the statements of Exercise 5.
7. Given sets $A, B$, and $C$. Express each of the following sets in terms of $A, B$, and $C$, using the symbols $\cup, \cap$, and - .

$$
\begin{aligned}
& D=\{x \mid x \in A \text { and }(x \in B \text { or } x \in C)\}, \\
& E=\{x \mid(x \in A \text { and } x \in B) \text { or } x \in C\}, \\
& F=\{x \mid x \in A \text { and }(x \in B \Rightarrow x \in C)\} .
\end{aligned}
$$

8. If a set $A$ has two elements, show that $\mathcal{P}(A)$ has four elements. How many elements does $\mathcal{P}(A)$ have if $A$ has one element? Three elements? No elements? Why is $\mathscr{P}(A)$ called the power set of $A$ ?
9. Let $R$ denote the set of real numbers. For each of the following subsets of $R \times R$, determine whether it is equal to the cartesian product of two subsets of $R$.
(a) $\{(x, y) \mid x$ is an integer $\}$.
(b) $\{(x, y) \mid 0<y \leq 1\}$.
(c) $\{(x, y) \mid y>x\}$.
(d) $\{(x, y) \mid x$ is not an integer and $y$ is an integer $\}$.
(e) $\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$.

## Exercises 2

1. Let $f: A \rightarrow B$. Let $A_{0} \subset A$ and $B_{0} \subset B$.
(a) Show that $f^{-1}\left(f\left(A_{0}\right)\right) \supset A_{0}$ and that equality holds if $f$ is injective.
(b) Show that $f\left(f^{-1}\left(B_{0}\right)\right) \subset B_{0}$ and that equality holds if $f$ is surjective.
2. Let $f: A \rightarrow B$ and let $A_{i} \subset A$ and $B_{i} \subset B$ for $i=0$ and $i=1$. Show that $f^{-1}$ preserves inclusions, unions, intersections, and differences of sets:
(a) $B_{0} \subset B_{1} \Longrightarrow f^{-1}\left(B_{0}\right) \subset f^{-1}\left(B_{1}\right)$.
(b) $f^{-1}\left(B_{0} \cup B_{1}\right)=f^{-1}\left(B_{0}\right) \cup f^{-1}\left(B_{1}\right)$.
(c) $f^{-1}\left(B_{0} \cap B_{1}\right)=f^{-1}\left(B_{0}\right) \cap f^{-1}\left(B_{1}\right)$.
(d) $f^{-1}\left(B_{0}-B_{1}\right)=f^{-1}\left(B_{0}\right)-f^{-1}\left(B_{1}\right)$.

Show that $f$ preserves inclusions and unions only:
(e) $A_{0} \subset A_{1} \Rightarrow f\left(A_{0}\right) \subset f\left(A_{1}\right)$
(f) $f\left(A_{0} \cup A_{1}\right)=f\left(A_{0}\right) \cup f\left(A_{1}\right)$.
(g) $f\left(A_{0} \cap A_{1}\right) \subset f\left(A_{0}\right) \cap f\left(A_{1}\right)$; give an example where equality fails.
(h) $f\left(A_{0}-A_{1}\right) \supset f\left(A_{0}\right)-f\left(A_{1}\right)$; give an example where equality fails.
3. Show that (b), (c), (f), and (g) of Exercise 2 hold for arbitrary unions and intersections.
4. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) If $C_{0} \subset C$, show that $(g \circ f)^{-1}\left(C_{0}\right)=f^{-1}\left(g^{-1}\left(C_{0}\right)\right)$.
(b) If $f$ and $g$ are injective, show that $g \circ f$ is injective.
(c) If $g \circ f$ is injective, what can you say about injectivity of $f$ and $g$ ?
(d) If $f$ and $g$ are surjective, show that $g \circ f$ is surjective.
(e) If $g \circ f$ is surjective, what can you say about surjectivity of $f$ and $g$ ?
(f) Summarize your answers to (b)-(e) in the form of a theorem.
5. In general, let us denote the identity function for a set $C$ by $i_{C}$. That is, define $i_{C}: C \rightarrow C$ to be the function given by the rule $i_{C}(x)=x$ for all $x \in C$. Given
$f: A \rightarrow B$, we say that a function $g: B \rightarrow A$ is a left inverse for $f$ if $g \circ f=i_{A}$; and we say that $h: B \rightarrow A$ is a right inverse for $f$ if $f \circ h=i_{B}$.
(a) Show that if $f$ has a left inverse, $f$ is injective; and if $f$ has a right inverse, $f$ is surjective.
(b) Give an example of a function that has a left inverse but no right inverse
(c) Give an example of a function that has a right inverse but no left inverse.
(d) Can a function have more than one left inverse? More than one right inverse?
(e) Show that if $f$ has both a left inverse $g$ and a right inverse $h$, then $f$ is bijective and $g=h=f^{-1}$.
6. Let $f: R \rightarrow R$ be the function $f(x)=x^{3}-x$. By restricting the domain and range of $f$ appropriately, obtain from $f$ a bijective function $g$. Draw the graphs of $g$ and $g^{-1}$. (There are several possible choices for $g$.)
3. Let $A$ be a set; let $X$ be the two-element set $\{0,1\}$. Show that there is a bijective correspondence between the set $\odot(A)$ of all subsets of $A$ and the cartesian product $X^{4}$.
4. (a) A real number $x$ is said to be algebraic (over the rationals) if it satisfies some polynomial equation of positive degree

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

with rational coefficients $a_{i}$. Assuming that each polynomial equation has only finitely many roots, show that the set of algebraic numbers is countable.
(b) A real number is said to be transcendental if it is not algebraic. Assuming the reals are uncountable, show that the transcendental numbers are uncountable. (It is a somewhat surprising fact that only two transcendental numbers are familiar to us: $e$ and $\pi$. Even proving these two numbers transcendental is highly nontrivial.)
5. Determine, for each of the following sets, whether or not it is countable. Justify ; your answers
(a) The set $A$ of all functions $f:\{0,1\} \rightarrow Z_{+}$
(b) The set $B_{n}$ of all functions $f:\{1, \ldots, n\} \rightarrow Z_{+}$
(c) The set $C=\bigcup_{n \in Z_{+}} B_{n}$.
(d) The set $D$ of all functions $f: Z_{+} \rightarrow Z_{+}$:
(e) The set $E$ of all functions $f: Z_{+} \rightarrow\{0,1\}$.
(f) The set $F$ of all functions $f: Z_{+} \longrightarrow\{0,1\}$ that are "eventually zero." [We say that $f$ is eventually zero if there is a positive integer $N$ such that $f(n)=0$ for all $n \geq N$.]
(g) The set $G$ of all functions $f: Z_{+} \longrightarrow Z_{+}$that are eventually 1 .
(h) The set $H$ of all functions $f: Z_{+} \longrightarrow Z_{+}$that are eventually constant.
(i) The set $I$ of all two-element subsets of $Z_{+}$.
(j) The set $J$ of all finite subsets of $Z_{+}$.
6. We say that two sets $A$ and $B$ have the same cardinality if there is a bijection of $A$ with $B$.
(a) Show that if $B \subset A$ and if there is an injection

$$
f: A \longrightarrow B,
$$

then $A$ and $B$ have the same cardinality. [Hint: Define $A_{1}=A, B_{1}=B$, and for $n>1, A_{n}=f\left(A_{n-1}\right)$ and $B_{n}=f\left(B_{n-1}\right)$. (Recursive definition again!) Note that $A_{1} \supset B_{1} \supset A_{2} \supset B_{2} \supset A_{3} \supset \cdots$. Define $h: A \rightarrow B$ by the rule

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A_{n}-B_{n} \text { for some } n, \\ x & \text { otherwise. }]\end{cases}
$$

(b) Theorem (Schroeder-Bernstein theorem). If there are injections $f: A \rightarrow C$ and $g: C \longrightarrow A$, then $A$ and $C$ have the same cardinality.
7. Show that the sets $D$ and $E$ of Exercise 5 have the same cardinality.
8. Let $X$ denote the two-element set $\{0,1\}$; let $\mathbb{B}$ be the set of all countable subsets of $X^{\omega}$. Show that $X^{\omega}$ and $Q$ have the same cardinality.
9. (a) The recursion formula
(*)

$$
\begin{aligned}
& h(1)=1, \\
& h(2)=2, \\
& h(n)=[h(n+1)]^{2}-[h(n-1)]^{2} \quad \text { for } n \geq 2
\end{aligned}
$$

is not one to which the principle of recursive definition applies. Show that nevertheless there does exist a function $h: Z_{+} \rightarrow R$ satisfying this formula. [Hint: Reformulate (*) so that the principle will apply and require $h$ to be positive.]
(b) Show that the formula (*) of part (a) does not determine $h$ uniquely. [Hint: If $h$ is a positive function satisfying (*), let $f(i)=h(i)$ for $i \neq 3$, and let $f(3)=-h(3)$.]
(c) Show that there is no function $h: Z_{+} \rightarrow R$ satisfying the recursion formula

$$
\begin{aligned}
& h(1)=1 \\
& h(2)=2 \\
& h(n)=[h(n+1)]^{2}+[h(n-1)]^{2} \quad \text { for } n \geq 2 .
\end{aligned}
$$

